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ABSTRACT

Video object detection is the task of detecting objects in a sequence
of frames, typically, with a significant overlap in content among
consecutive frames. Mean Average Precision (mAP) was originally
proposed for evaluating object detection techniques in independent
frames, but has been used for evaluating video based object detec-
tors as well. This is undesirable since the average precision over all
frames masks the biases that a certain object detector might have
against certain types of objects depending on the number of frames
for which the object is present in a video sequence. In this paper
we show several disadvantages of mAP as a metric for evaluating
video based object detection. Specifically, we show that: (1) some
object detectors could be severely biased against some specific kind
of objects, such as small, blurred, or low contrast objects, and such
differences may not reflect in mAP based evaluation, (2) operating a
video based object detector at the best frame based precision/recall
value (high F1 score) may lead to many false positives without a
significant increase in the number of objects detected. (3) mAP
does not take into account that tracking can be potentially used
to recover missed detections in the temporal neighborhood while
this can be account for while evaluating detectors. As an alternate,
we suggest a novel evaluation metric (VmAP) which takes the fo-
cus away from evaluating detections on every frame. Unlike mAP,
VmAP rewards a high recall of different object views throughout
the video. We form sets of bounding boxes having similar views
of an object in a temporal neighborhood and use a set-level recall
for evaluation. We show that VmAP is able to address all the chal-
lenges with the mAP listed above. Our experiments demonstrate
hidden biases in object detectors, shows upto 99% reduction in false
positives while maintaining similar object recall and shows a 9%
improvement in correlation with post-tracking performance.
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Figure 1: Consider a scenario, when two pedestrians A, and
B, are walking in front of a mobile robot. Each pedestrian
is visible in the camera for 10 frames. Suppose, a detector
D1 detects each pedestrian A, and B for 5 random frames,
D, detects B in all frames and misses A completely, and D3
detects A, and B in 5 frames but only in the frames when the
objects are nearer (and thus visually larger). It is easy to see
that the precision of all 3 detectors is identical. However, D
is most likely to detect all view variations of objects A and
B in a video, D3 would only work when object size is large,
whereas D is unfair and may even cause the robot to collide
with pedestrian A. The example highlights the case where
three detectors with very different characteristics (or even
having a bias) may have a similar performance in terms of
mAP.
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1 INTRODUCTION

It is widely accepted that large benchmark datasets have been one of
the primary reasons for rapid progress achieved in many computer
vision problems [10, 15, 26]. In this progress, metrics for comparing
the performance of various algorithms on these benchmark datasets
have also played a critical role. These metrics enable comparison
of widely different algorithmic techniques using various kinds of
hyper-parameters, and bring out the strengths and weaknesses of
each detection method. For example, accuracy is a good indicator
of an algorithm’s performance for object detection, but is often
tied to a particular value of precision and recall. To overcome this
dependence, researchers have been using mAP, which takes an
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average precision (AP) over all recall values and further calculates
the mean of AP over all classes. This has served the community
well for evaluating object detectors on independent frames.

Many computer-vision based applications of interest often work
with video/streaming image inputs. For example, pedestrian and
vehicle detection systems in autonomous vehicles, surveillance
applications, medical diagnostics, etc. The availability of tempo-
ral information in the input allow algorithms to exploit temporal
consistency and context, and thus improve detection performance.
However, till date, such algorithms are also evaluated using mAP,
by treating each consecutive video frame as independent. Such
an evaluation focuses on an object detector being able to detect a
certain object in every frame. The equal weightage for every frame
irrespective of the objects would often result in a negligible change
in AP when certain objects are missed. For example, a detector
that misses an occasional bicycle crossing the road could have a
high AP since most of the frames contain parked bicycles. This
may lead to life-threatening accidents [30]. A detector which con-
sistently misses objects with specific properties of color, contrast,
light, blur, speed etc. would be rated equal compared to a detector
which misses certain views randomly. As an example, the mAP
metric would give lesser importance to fast moving objects. This is
simply because, everything else remaining the same, a faster object
is likely to remain visible in lesser number of frames than a slow
moving or stationary object. Similarly mAP doesn’t incentivise an
algorithm to detect harder instances, such as farther objects which
look visibly smaller in an image.

Apart from being able to use video context to detect more objects,
object detectors should also be able to use the temporal continuity
to reduce false positives (Sec. 5). In a high FPS (frames-per-second)
video, even a low false positive rate may imply many wrong pre-
dictions in a short time interval, which may overwhelm a user or a
planning algorithm. We, therefore, argue that in video based object
detection, false positives should be highly penalized.

In video object detectors, trackers can also be used to forecast
object positions from previous frames. Thus, a per-frame detection
of an object is a role better suited for a tracker and is rightly a part
of the tracking evaluation metrics (MOTA and MOTP) [27]. We
propose that for evaluation of video object detection algorithms, it
would be a more appropriate objective to detect all objects in the
video even if some frames/views of the object are missed in certain
frames intermittently. Fig. 1 shows three detectors with precision of
1. Here, we show how similar recall values might indicate different
detection capabilities. The problem lies in the assumption that each
frame is independent, and detecting or missing an object in each
frame carries equal weight. If we were to combine the first and last
five frames in sets for each of the objects, the set recall would be
higher for D; (1) than Dy, D5 (0.5).

Thus, to capture the detectability of objects throughout a video
sequence, without rewarding detection of every instance, we com-
bine the bounding boxes for an object across frames into sets. We
combine bounding boxes using a unifying criteria, ¢ (more details
in Sec. 3.1). We argue that it is sufficient to detect an object in this
unified set rather than detecting the object at every frame. For ex-
ample, the frames where an object is around it’s initial location, and
hence look visibly similar, could be clubbed together in a set. The
recall for a video is summed over all such sets within the video. The

True Positives (TP*), and False Negatives (FN*) are accumulated
over sets and then used to calculate the mAP, hereafter called the
VmAP (Video mean average precision). Our metric can be used
along with complementary metrics like Average Delay[18] to cap-
ture the delay with which the objects are detected. Our code is
available at https://github.com/vaibhavg152/VmAP-video-object-
detection-evaluation-metric.

Contributions: The key contributions of this paper are: (1) We
propose a new evaluation metric (VmAP) for video object detection
which is sensitive to biases in object detectors. (2) We demonstrate
empirically that detectors ranked by Set Recall provide better post—
tracking performance than Frame Recall. Ranking by set recall has
shown a 9% increase in the spearman correlation coefficient with
respect to the post-tracking ranks with 13 detectors. (3) Our metric
helps choose a better operating point for video based object de-
tectors with (upto 99%) lesser false positives leading to improved
utility of these algorithms in real life applications.

2 RELATED WORK

Metrics for object detection: Object Detection is the task of pre-
dicting a rectangular (or cuboidal in case of 3D) bounding box and
class scores corresponding to each object in the image. The PAS-
CAL VOC Challenge [11] was a popular object detection contest
with interpolated average precision [28] as the metric for evalua-
tion. In 2012 [8], this was later changed to average precision for a
finer comparison among methods. The predicted bounding boxes
are classified as True Positives and False Positives, based on the
intersection over union (IoU) overlap score with the ground truth.
Any remaining objects in the scene are classified as False Negatives.
These numbers are then accumulated across all frames in the data
under evaluation. The Average Precision (AP) then captures the
performance of the detector under varying recall values. A mean
over all classes of objects produces the final score of mean average
precision (mAP). COCO mAP [15], in addition, uses an average
over different IoU thresholds used for matching. A detailed com-
parison has been done in recent surveys [20, 21, 33]. Localization-
Recall-Precision (LRP) [19] re-defines the error and provides an
optimization strategy for determining the best operating point for
a given detector. However, this lacks the robustness of comparison
over different operating points.

Related/Complementary Metrics: Mao et al. [17, 18] have pro-
posed a metric for rewarding early detection of objects in the videos.
The authors define algorithmic delay as the delay (in number of
frames) in detecting the object once it has appeared in the video.
The authors suggest finding an average of the delay at different false
alarm rates for incorporating different operating conditions. While
the metric addresses the issue of early detection, the evaluation
still rewards detection at every frame thus biasing the evaluation
towards objects with more frames. As pointed out in the paper,
frame based detectors show a better average delay than aggregation
based methods[34]. This shows that average delay alone doesn’t
indicate the superiority of a detector. From a fairness perspective
also, though the average delay of unfair detector may be larger, it
may be large even for the unbiased detector. This is also evident in
Fig. 1, where average delay of D1, and D; could be same, and the
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metric cannot distinguish between biased and unbiased detectors.
Sobti et.al. [29] propose a metric which does not reward detection
at every frame. The metric targets evaluation of object detectors for
real-time streams under various resource constraints'. Their metric,
however, does not address false positives and is only applicable to
videos with limited vertical motion. The metric also ignores the
re-detection required for an object once its appearance/location has
changed significantly. Li et al. [13] evaluate the performance of the
complete pipeline of a detector, tracker and forecaster, however, it
suffers from the same problems as mAP as far as sensitivity to bias
is concerned. The problem of streaming perception is also different
from evaluation of object detectors. Streaming Perception ranks
systems in the order of state estimation quality while evaluation of
object detection in videos ranks object detectors in the ability of
detecting different object instances.

Tracking vs Video Object Detection: As compared to the object
tracking literature[27], where the focus is on being able to track
the object in every frame, we propose that the evaluation of object
detectors on videos should be different. Instead of rewarding a
detector that does the task of a tracker as well, the detector should be
rewarded for identifying unique objects, thus generating sufficient
observations (for all objects without any bias) for a tracker to work
efficiently.

Bias Identification: For evaluation of object detection on videos,
we propose an alternate definition for True Positives, False Positives,
and False Negatives as described in Section 3. These numbers are
not accumulated on all frames, but rather on all sets of an object
according to a unifying criteria defined in Section 3.1. To the best
of our knowledge, this is the first work which addresses video
object detection evaluation while incorporating fairness to under-
represented objects.

3 PROPOSED METRIC

An ideal metric for evaluating object detection in videos should
be able to capture if a detector detects all instances of an object
which are sufficiently different from each other. Consider a case
of static camera capturing a static object. There is no utility in
evaluating on all the frames of this video, since a detector which
detects object in one frame will be able to do in the rest as well.
The argument implies that the evaluation should be adaptive to
the object’s motion. If an object is moving quickly, the object must
be detected very frequently. On the other hand, if an object is
stationary, it is sufficient to detect the object at larger intervals.
In this paper, we propose to incorporate it in a principled way
using a new metric. To accomplish this objective, we first suggest a
method to combine different bounding boxes for the same object in
consecutive frames into a set of bounding boxes. We then change
the objective function to optimize detection of more sets rather
than more frames.

1Our metric may also address the comparison of object detectors running at different
speeds (and hence under different resource constraints), however the same is not the
focus of this paper, and hence not experimentally validated.

3.1 Set Formation

In Fig. 1, say, the first 5 frames are combined into one set and
the last 5 into another. We can see that, detector 9; detects all
the sets, D3 detects sets only for the pedestrian B and D3 detects
only one set per pedestrian. Thus, if we order the detectors on the
basis of their performance at the set level, then this would better
reflect the performance achievable through a tracker or as would
be desired by a control system which uses the detections for path
planning/subsequent actions. The following sections describe the
criteria for forming sets and scoring the object detectors based on
the objective of detection in each set instead of each frame.

Unifying Criteria: There can be different ways to unify the object
instances into sets. In this section, we discuss a location-based uni-
fying criteria U;. For two bounding boxes b and b” with coordinates
<x,y, w, h>, and <x’, y’, w’, h’>, the unifying criterion U is defined
as:
Uy(b,b') = maxy— 2= 10U (<x, yw, h>,
x=—y,Ay=—y
<’ +Ax,y" + Ayw’, h'>) (1)

The criteria U] allows us to define a broader area around the original
box where a non-zero overlap would be possible. This allows the
object to move by some amount before the IOU value starts to
decrease. We select y as 10 pixels in our experiments. We use an
absolute number of pixels instead of a value that is proportional to
the size of the original box, so that the area is relaxed to the same
extent for both small and large area bounding boxes. This implies
that a similar amount of displacement would be required for both a
small and a large object to form a new set. This creates an implicit
reward for the object detectors to focus equally on different objects.
Fig. 2 shows examples of the sets formed using our criteria.

Set Formation Procedure: For N objects in a video, each object
{0; }f\i , is present in multiple frames. Let i be the index over objects,
Jj be the index over sets and k be the index over frames. Let bf
represent the bounding box of O; in the k! frame. Let |O;| denote
the number of frames for which the object O; is present in the
video. The set S(i, j) represents the jth set for the object O;. Each
set member is a tuple <k, b{.c>. Note that the set is well-ordered with
respect to k. We use the following procedure for combining the
bounding boxes into various sets:

(1) For every object O;, the well-ordered set S(i,0) is initialized

with <f, b{ >, where f is the first frame when O; appears in the
video. [ ) o £ fHl

(2) Theelement <f+1,b; "~ >isappended into S(i, 0) if U (b; , b; ")
0. Otherwise, a new set S(i, 1) is created.

(3) For every new frame, the bounding box bf? is compared to
the bounding box of the minimal element of the current set
S(i, j) (extracted using buin(S(i, j))) where byin(.) returns the
minimal element in the set. If ‘Lll(bf, bmin(S(i, j)) > 0), then
<k, bf.‘> is appended into the existing set S(i, j).

(4) Otherwise, a new set S(i, j + 1) is instantiated with <k, bf.‘> as
its first element, and Step 3 is repeated with S(i, j + 1) as the
current set.

Fig. 3 demonstrates the set creation process with an example. With
the method as described above, all the bounding boxes within each
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Figure 2: In this figure, we show the start (dark rectangle) and end (light rectangle) frame for three objects in video. We also
show the centre of bounding box in intermediate frames (red dots). The sets contain bounding boxes of an object in a similar
spatial neighborhood (as decided by the unifying criteria), as its initial location in the consecutive video frames. We blend the

frames in each set for visualization.
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Figure 3: For every object O;, the bounding boxes in the
frames which contain the object i are combined into sets.
The object bounding box in every new frame (orange frame)
is compared against the minimal (first frame) of the last set
(green frame from b, (S(i, j))). If the location constraint U,
is above a threshold, the new bounding box is added to the
previous set S(i, j). Otherwise, a new set S(i, j + 1) is instanti-
ated.

set S(i, j) satisfy the following constraint:
Uy (bmin(S(, )),b) > 0k Y <k, by> € S(i, j) ()

Note that the procedure described above leads to different sets
for each object. Since the object id is used from the ground truth
for forming the sets, there is no incorrect assignment in case of
occlusion or crowds.

3.2 Scoring

After the sets are formed, we redefine the True Positives and False
Negatives at the set-level for the purpose of evaluation. Thus, both
the Precision and Recall are re-defined.

True Positives (TP*): The detections are now evaluated at the
set level. Consider a set S(i, j), i.e., the ji" set for the it" object,
which contains bounding boxes from the frames k1 -kz. Note that

S(i, j) would have similar views of the object O; at approximately
the same spatial location in different frames. If any of the detection
corresponding to the frames kj to k2 match the ground truth for the
respective frame, the set is counted as a true positive. This choice of
any one detection in a set is further explored in the supplementary
material. A detection dj is said to match the ground truth bounding
box bﬁ , if the bounding box d; has an intersection over union score
I0U > IOUyesy With the bounding box bt{ in frame [ within the
set S(i, j):

10U(d}, bf) > IOUpheesh 3)

The matching is done in the decreasing order of confidence level
for the object class as originally discussed in [9].

False Negatives (FN*): Any set S(i, j) which has no matches dj is
regarded as a False Negative. This indicates that the detector missed
an entire range of appearances/locations of that particular object.

False Positives (FP*): False positives in a video are particularly
important. A false positive signifies that an object has been detected
(possibly by confirmation from multiple frames). Therefore, in the
proposed metric each false positive is counted without assignment
to any particular set. This is why it becomes difficult to obtain high
precision using our video metric, since any singular wrong frame
based false positive will lead to a false positive in our metric. This
is in contrast to computation of false negative where a single frame
based false negative does not necessarily lead to a false negative
in our metric, as long as the detection in all the frames in a set
are not missed. We believe that asymmetric counting of false posi-
tives/negatives is reasonable in video based object detector, since
low false positive rate is particularly important for the video ob-
ject detection due to their potential to cause repeated and frequent
disruptions in an high FPS video. Note that since all false positives
are accumulated across frames, it may make sense for an algorithm
to intentionally skip reporting detections which have been found
only on few frames while processing a video to ensure that only
high confidence detections are reported. The video-level precision
(VP) and recall (VR) is then defined as:

TP R= TP*
~ TP* +FP¥’ ~ TP* +FN*
Similar to Everingam et al. [10], we use the average precision at
different recall values and a mean across different classes to get the
VmAP (Video Mean Average Precision).

The ablation studies for the set formation criteria and the match-
ing procedure are discussed in the supplementary material.

VP (4)



4 EXPERIMENTS

In this section, we discuss results of the experiments corresponding
to two primary claims for our metric:

(1) Our metric brings out the biases in object detectors. If a detector
has a certain bias against some objects, our metric would score
it significantly lower while the mAP metric scores it at par with
other detectors.

(2) Using the Video Recall and Video Precision curve, we obtain
a much better operating point. The operating point has much
lesser false positives while having a similar number of sets
detected.

(3) The ranking of object detectors as determined using Video
Recall (VR) has a higher correlation with the post-tracker per-
formance of the detectors as compared to frame recall.

Dataset Details: To compare object detection algorithms in videos,
we use the validation set from the Imagenet VID dataset [26]. The
VID validation set contains 30 classes of objects in 555 snippets.
The annotations for the dataset contain object id as well as the
bounding box location in each frame.

Object Detectors: We use object detectors trained on the VID
dataset, namely, RDN [6], FGFA [34], MEGA [4] and DFF [35]. These
detectors take advantage of multiple frames both global as well as
local aggregation before predicting the bounding boxes per frame.
For a wider analysis, we also test the efficacy of models trained
on the COCO dataset [15] on 347 snippets from the VID dataset
having common classes of objects between VID and COCO datasets.
The detectors in this category are Centripetal Net [7], Corner Net
[12], Faster RCNN [25], YOLOv3 [24], DETR [1], FCOS [31], HTC
[2], and, Retina Net [14]. These detectors include object detectors
using transformers, keypoint regression, center regression, Feature
Pyramid Networks (FPN) as well as two stage detectors. We would
like to acknowledge MMDetection Library [3] for providing pre-
trained models for the same.

4.1 Fairness against Biases

Evaluating video object detectors using frame based evaluation
metrics fails to capture and penalize any bias that might be present
in the detector. In this section, we experimentally show this insen-
sitivity of mAP towards biases in a detector. For bringing out this
effect, we first create synthetic detectors (Sec. 4.1.1) by artificially
adding biases against some aspects in the detection. Finally, we
show how the mAP can be manipulated (Sec. 4.1.2) by varying the
number of frames/objects in a video. The mAP metric is unable to
capture the bias of detectors on the real dataset.

4.1.1 Synthetic Detectors on Real Data. As a first step to create
synthetic detectors with various biases, we add new bounding boxes
at random locations and size, and equal to the number of ground
truth bounding boxes. The confidence values for the bounding
boxes (both ground truth and random) are sampled from a log-
normal probability distribution. For creating an unbiased detector,
we fix p = 0.5 as the probability that each bounding box will be
outputted by the detector. Thus, all objects are equally likely to be
detected.

We introduce bias in the detector by tweaking the probability of a
box being outputted by the detector. The probability is tweaked for

ground truth boxes with certain attributes to create a bias. Further,
to make the biased and unbiased detectors directly comparable, we
keep the total number of detections similar in the two detectors.
We achieve this by decreasing the probability of outputting rest of
the boxes. We explain below with an example.

Consider an unbiased detector which was generating 500 de-
tections, of which 50 boxes were of size more than 1000. Let us
consider a biased detector which favors large objects. To create such
a synthetic detector a larger ground truth bounding box with area
more than 1000 may have its probability of selection by the biased
detector set to p = 0.75. Now let us assume that after increasing
p for larger objects, the total number of output boxes increases to
600, of which 150 are large objects. For reasons as described above,
we also reduce the probability of rest of the boxes in the ground
truth such that their total number in the output comes to 350, and
the total number of detections remain at 500.

The above method of setting probabilities allows us to create
plausible detectors with different biases but a similar mAP value.
This implies that on the basis of mAP these detectors are not distin-
guishable. We then evaluate such detectors using proposed VmAP to
see if our metric can expose their biased nature and score them
lower.

For the experiments below, to create bias against particular type
of objects, their probability p is decreased from 0.5 to 0.0 (in steps),
and for the remaining boxes, p is increased in a manner described
above. We introduce following biases in the synthetic detectors:

e Size: A bounding box is declared small if its area (in pixels
squared) is less than 4% of the total area of the image. The
detector is biased against small objects.

o Brightness: An object is termed dark if the average luminance
of pixels within the bounding box is < 90. Dark boxes are
biased against.

e Contrast: An object having a contrast < 0.42 is made less
likely to be detected. To quantify the color contrast, we use
Weber Contrast[22]:

Contrast = = (5)
I
where I represents the average luminance of the pixels in the
bounding box and I, represents that of the background. For
a bounding box of dimensions I X b, a region of 1.5 X 1.5b
around the bounding box (at the same center) was used as
the background.

o Speed: A fast moving object is defined as the object having a
set size less than 40 frames. The probability of faster objects
getting detected is reduced.

e Color: The synthetic detector is made less likely to detect
objects having a red color. Hue of the dominant color inside
the bounding box is calculated and if it lies within [-60, 60]
(red range), probability of it being detected is reduced.

Fig. 4 shows the comparison plots for the biased detector described
above. The x-axis shows various degrees of bias in these detectors,
whereas y-axis shows various metric scores. We note that while the
VmAP decreases with increase in bias, the mAP remains constant.
This confirms that the proposed metric can be used to detect, and
lowers the score of biased detectors.
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Figure 4: The figure shows examples of the biases introduced and behavior of mAP and VmAP on increasing these biases. First
row shows the examples of objects less likely to be detected (small/dark/low contrast/fast moving/color) while the second row
shows examples of their counterparts which are more likely to be detected. The X axis shows the increasing degree of biases
and Y axis shows the behaviour of mAP and VmAP. mAP is fairly insensitive to biases in all the cases, whereas VmAP reduces
on increasing the bias. The amount of sensitivity of VmAP varies in each case. Other metrics like mAP normalized with length
of set (LNmAP) and mAP of just keyframes (KFmAP) are also found insensitive. Average Delay[18] also increases with increase
in bias of the detectors. The metrics are defined in detail in the supplementary material.

To test if alternate formulations of metrics are able to capture
this bias, we also include Average Delay Metric [18] and two more
baselines - LNmAP (Length-Normalized mAP) and KFmAP (mAP
of the keyframes). The length-normalized mAP normalizes the

number of frame-wise true/false positives by the length of the set.

The KFmAP picks every 10" frame(as used in [35]) as the keyframe
and finds the mAP using only these keyframes. KFmAP and LNmAP
follow the mAP curve with the variation in bias, thus unable to
capture the bias in the detectors.

4.1.2  Dataset Curation to Trick mAP Evaluation. To show how the
mAP metric is susceptible to manipulation using the dataset, we
curate some toy examples from the Imagenet VID dataset[26]. In
Tab. 1, in first three rows, we increase the number of small objects
(D1—D3) while keeping the overall number of frames corresponding
to small objects same. In curated dataset Dj, we start with 600
frames from two videos - one containing a large bear and another
containing a small bear. In dataset Dy, we replace half the frames
with frames from a different video, resulting in similar number
of frames for small objects but increasing the objects from 1 to
2. Similarly in D3 we increase the number of objects further to 4,
while keeping the frames corresponding to them to 600. We use
these 3 datasets to evaluate a detector (RDN [6]) which we believe
is biased against small objects. However, note that the mAP values
remains same for the detector on the three datasets. On the other
hand, VmAP is able to successfully degrade the detector.

By careful manipulation of the dataset, a biased detector may
be made to look good as shown above. Similarly another choice of
dataset may be made to look a detector bad as well. In Tab. 1, rows
4-6, we incrementally add the frames from a video containing small
objects. We test DFF [35] on these datasets, and the mAP shows
that the same detector is worsening. Whereas VmAP successfully
maintains the performance of the detector at the same level.

The above experiments show that even for the real detectors,
one can choose the datasets carefully to trick the mAP comparison.
Our proposed metric is successful in discerning such nuances, and
give expected scores to the detectors.

4.1.3  Biased Detectors: Visual examples. Fig. 5 shows some visual
examples from the videos where the unfair behavior of a detector
is masked by the mAP based evaluation. The timeline plots in the
figure denote the presence, set formation as well as the detection
of objects. The rectangles represent sets of objects. Thus, one can
see that Oy stays at around the same location for frames 0-50. The
green and red dots represent frame-wise detects and misses. The
rectangle is shaded green in case of a True Positive set and red in
case of a False Negative set. False positives per frame are shown in
the upper axis.

4.2 Operating Point

When using a detector in a practical application, often the most
important metric is the accuracy at the best-suited threshold. The
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Figure 5: The timeline plots for a video (ref. Sec. 4.1.2) for two different detectors are shown on the left side. In the first row,
FGFA (mAP 78.0) and MEGA (mAP 75.1) have similar mAP accuracy. However, FGFA fails to detect the small watercraft in
the video. This is captured by the VmAP metric (MEGA - 57.8 Vs FGFA - 44.5). Similarly, in the second row, CATDET is able to
detect almost all sets of the object without having a single false positive, while RFCN has multiple false positives during the
video. The similar VmAP (CATDET - 81.8 Vs RFCN - 77.6) despite a vastly different mAP (CATDET - 23.8 Vs RFCN - 61.2) can be
observed from the number of sets that are detected.

£ fi Os O, mAP VmAP
D; 600 600 1 1 496 500
D, 532 600 2 488 383
Ds 600 600 11 4 467 303
Dy 60 360 1 1 983 535
Dg 180 360 1 1 958 552
Dec 360 360 1 1 914 552

Table 1: The table shows mAP, and VmAP values for the same
object detector (biased against small objects) when tested on
different subsets of a dataset. Notice that depending upon
which videos we include or exclude in the dataset, the de-
tector can be made to look arbitrarily good or bad. f;(f;) and
Os(0;) represent number of frames, and number of sets in
the small and large category respectively. Refer Sec. 4.1.2 for
the detailed discussion.

Detector  Video Recall  False Positives
P-R VP-VR P-R VP-VR
DFF 86.96  84.78 108 1
FGFA 89.13 82.61 105 1
RDN 91.3 86.96 258 3
MEGA 95.65  93.48 109 2

Table 2: The table shows the set recall (VR) and false positives
(FP) with the P-R operating point and the VP-VR operating
point on videos of hamster class from the Imagenet VID
dataset (other classes in supplementary). It is observed that
Video Precision/Recall operating point has much lesser false
positives while having a similar set recall.

best-suited threshold is typically defined using the maximum F1-
score point on the PR curve[5, 16]. Tab. 2 shows the number of

false positives from various popular detectors when operated at the
best threshold computed from VP, and VR as defined in Eq. (4). We
compare it with the false positives obtained from the best threshold
computed from frame level precision and recall. Note that while
the VR remains similar at both the threshold values, the number of
false positives decrease from 108 to 1 for DFF [35], and from 258 to
3 for RDN [6].

Thus, detectors deemed better at the frame level may not perform
better in a video based system. Our experiments shown earlier
indicate that VmAP could be a better proxy for performance at the
system level.

4.3 Post-Tracking Assessment

Detectors are typically ranked in isolation from other components
of the system, like trackers, or even planning and control systems.
However, in practical systems, the detectors are often run with
trackers to increase the confidence in the predicted objects, as
well as, to establish an association between the predicted boxes in
different frames. Consider an object detector being run at a certain
frame precision, say 0.9. The efficacy of the detector is typically
measured using the Frame Recall. However, we argue that the
“ground truth ranking” for the detectors is better indicated by the
performance of the object detector with an ideal tracker. An ideal
tracker predicts the bounding box location of a detected object in
the next frame. It also filters out false positives in frames where
sufficient evidence of an object detection is not found. Thus, we
use the Frame Recall of an object detector coupled with an ideal
tracker with a Frame Precision P = 0.9. The order of frame recall
is considered the ground truth ranking for the object detectors. In
Tab. 3 we present the rankings of the detectors with Frame Recall
(FR) and Video Recall (VR) as the criteria as well as the ground
truth rankings (FR post-tracking). VR has a spearman correlation
coefficient (SCC) of 0.97 while FR has an SCC of 0.93 on the entire
dataset. We further verified that on a 10-way split of the dataset, VR



Detector FR Rank VR Rank FR* Rank

RDN 80.45 2 79.27 1 92.27 1
MEGA-BASE  77.85 4 75.95 3 91.92 2
MEGA 81.6 1 77.12 2 91.31 3
YOLOV3 73.18 6 71.52 5 90.75 4
FGFA 79.98 3 7275 4 89.89 5
DFF 75.57 5 69.93 6 88.33 6
DETR 56.37 9 65.74 8 85.33 7
FCOS 60.58 7 6644 7 84.93 8
HTC 58.99 8 63.01 9 82.67 9
RetinaNet 56.18 10 60.45 11  82.02 10
Centripetal 53.24 11 62.31 10 80.79 11
FRCNN 49.69 12 56.65 12 7717 12
CORNERNET 47.04 13 55.48 13 76.48 13

Table 3: We test the ranks of detectors as determined by
the Frame Recall (FR) and Video Recall (VR) at 0.9 frame
precision. The ground truth order is determined by using
the Frame Recall (FR*) when an ideal tracker is used along
with the detector at the given precision. Video Recall (VR)
achieves a spearman correlation of 0.97 as compared to 0.93
for Frame Recall (FR) indicating the suitability of VR as a
measurement for post-tracking effectiveness.

and FR have an SCC of 0.95 + 0.013 and 0.87 + 0.023 respectively.
The corresponding rank error is 8 and 14. This further highlights
the effectiveness of the set formation strategy and evaluation in
sets. The trend of VR, FR and FR with ideal tracker for the detectors
is also shown in the supplementary material.

4.4 Ablation Studies

We present various ablation studies to understand the effect of
different hyper-parameters in our system in the supplementary
material. We analyze various unifying criteria to combine bounding
boxes into sets. For example, we have considered appearance based
unification as well as location based, and their various combinations.
We also do an ablation study by varying the definition of a true
positive set.

5 DISCUSSION

The progress in object detection methods for individual images
was marked by the addition of datasets. There is now significant
amount of data available for video object detection as well[23, 26].
The recent trend in video object detection has been to use more and
more context locally (from nearby frames) as well as globally (from
far-away frames)[4] due to which the mAP numbers have increased.
Local context enables the detectors to ensure that the detection
effort from the previous frame is not ignored when detecting the
next frame. While many object detectors [4, 32, 34] take advantage
of other frames to get object detections, they do not explicitly reduce
false positives using this mechanism. As we take focus away from
per-frame detection using our metric, we also propose to take the
focus towards robust (very few false positives) and fair (all types of
objects) object detection in videos.

In Fig. 6, we show how simply accumulating detections over 3
frames before reporting the detections increases the precision at the
operating point by upto 100%. The bounding boxes from 3 frames
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Figure 6: The PR curve shows the effect of temporal NMS
across frames. Higher recalls now have better precision due
to reduced false positives.

are accumulated on a single frame and a (temporal) non-maximal
suppression is done on the resultant boxes. This removes any false
positives in the vicinity of the detected object and allows a detector
to pick the best detection from 3 frames. With this simple strategy
for false positive reduction, we suggest that there is a scope in
video object detectors to look closely at false positives and develop
strategies for more confident detections of objects.

6 CONCLUSION

The proposed metric, Video Mean Average Precision (VmAP), re-
veals alternate goals for progress in video object detection methods
where the focus shifts from per-frame detection to detecting ob-
jects more confidently and without omission of any objects. Our
metric fairly evaluates objects moving at different speeds in the
video sequence, thus equally weighing objects present at the same
location for hundreds of frames and a fast moving object present
at a location for just 2-3 frames. The results of our evaluation ex-
pose weakness of the current evaluation metric in controlling the
false positive rates at a video level and an unhealthy focus on per-
frame detection. The strategies for false positive reduction show a
path forward towards further improvement of video object detec-
tion methods in a way that would be useful in a complete system,
be it an autonomous car making decisions about how to advance
or a visually impaired person listening to description of objected
detected.
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Detector Video Recall False Positives Detector Video Recall ~ False Positives

P-R  VP-VR P-R VP-VR P-R  VP-VR P-R VP-VR
horse bear
MEGA-BASE 54,5 35.98 467.0 50.0 MEGA-BASE 91.6 57.14  633.0 31.0
DFF 45.5 26.98 441.0 1.0 DFF 87.39 67.23 561.0 22.0
FGFA 46.56 32.28 656.0 93.0 FGFA 94.12 82.35 666.0 326.0
RDN 54.5 33.86 452.0 38.0 RDN 95.8 45.38 892.0 26.0
MEGA 55.03 37.57 408.0 38.0 MEGA 94.12 56.3 775.0 36.0
lion bicycle
MEGA-BASE 73.33 60.0 5.0 0.0 MEGA-BASE 78.88 57.37 525.0 65.0
DFF 66.67 66.67 1.0 0.0 DFF 68.92 53.39 576.0 77.0
FGFA 60.0 60.0 5.0 0.0 FGFA 70.52 53.78 399.0 42.0
RDN 100.0 100.0 26.0 5.0 RDN 77.29 58.96 542.0 56.0
MEGA 100.0 100.0 22.0 0.0 MEGA 74.5 54.18 452.0 27.0
car bird
MEGA-BASE 82.85 45.65 5590.0 207.0 MEGA-BASE 41.46 28.85 383.0 28.0
DFF 77.7 38.92 6565.0 208.0 DFF 35.29 35.01 132.0 96.0
FGFA 80.74 44.2 6028.0 260.0 FGFA 33.89 30.81 189.0 60.0
RDN 84.43 52.64 5741.0 317.0 RDN 48.74  36.69  558.0 94.0
MEGA 81.53 51.19 5554.0 373.0 MEGA 41.46 36.41 210.0 100.0
cattle Table 6: Table showing false positive comparison of PR and

MEGA-BASE 73.06 5751 2330  14.0 VP-VR operating points

DFF 72.02 55.44 437.0 39.0
FGFA 62.69 53.37 345.0 23.0
RDN 78.76 63.73 515.0 31.0 Detector mAP U U, Uy U
MEGA 83.94 67.36 553.0 34.0
ol MEGA 83.4 56.6 71.6 66.1 76
airpane RDN 813  53.65 673 60.6 725
MEGA-BASE 84.42 77.39 387.0 78.0 FGFA 78.9 494 63.6 554 693
DFF 76.88  69.72 573.0 83.0 DFF 75.3 45.6 599 513 652
FGFA 80.53  68.59 615.0 27.0 Table 4: The table shows that although the range of values are
RDN 86.06  78.89  445.0 740 quite different, there isn’t any difference in the ranking of
MEGA 8555  77.64 403.0 1.0 algorithms by VmAP with different set formation strategies.
antelope
MEGA-BASE 91.34 87.4 122.0 15.0
DFF 88.19  78.74 125.0 15.0 A ABLATION: UNIFYING CRITERIA
FREI;? 232? 2;?2 19067.&)0 igg We experime'nt with the .foll(.)wing uni.fying. criteria: .
MEGA 7165 7165 26.0 26.0 . Loca‘tlon: The crlt.erlon described in the main paper and
- — - used in other experiments.
Table 5: Table showing false positive comparison of PR and o Appearance: We use 3D histogram of RGB values of pix-

VP-VR operating points els inside the bounding box b and use the resulting 512-
dimensional vector (V? app) as the feature representing the
appearance of b. For bounding boxes b; and by, the unifying
criteria U, is defined as:

U (b1,b2) = |[VPapp = VP2 gyl (6)

where ||.|| represents the euclidean distance between vectors
The bounding box b; is added to the set if Uy (b1, b2) < Oapp,
where 0, is the threshold.

e Location + Appearance: A bounding box b is added to
the set with by as its first frame if Uy (b1, b2) < O4pp and
Uy (b1, b2) < Orou

e Time duration: A bounding box is added to a set if the
number of frames already present in the set is less than a
certain threshold (6;).

The results are shown in Table 4. There is not much difference in
the ranking of the algorithms while the absolute numbers change
as per the criteria. Fig. 7 shows an example of sets formed in the
same video with different unifying criteria. As one may observe,



Figure 7: The figure shows the first and last frame of two of the sets formed by using the location criteria (left) and appearance
criteria (right). In the upper row, the appearance criteria declares a new set when the object has come too close. This might be
dangerous for perceive and control systems like self driving cars. In the second row, the appearance criteria declares a new set

even when the train hasn’t moved much. In both the cases, the location criteria gives a better estimation.
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Figure 8: The sets are smaller for the appearance () and even smaller for the (U,;) criteria. As expected, the set size for the

time criteria is the same (7). We believe that all criteria could be useful in different scenarios as discussed in Sec. A.

the appearance criteria may be more suited in counting like appli-
cations, while the location criteria is more suitable to perceive and
control systems (for optimal path planning and control tasks, etc.).

Figure 8 shows the average set length for each class. The sets
are smaller for the apperance and appearance-location criteria. As
expected, the set size is fixed for the time criteria. We believe that
all criteria are useful in some scenarios, e.g., location criterion in

perceive-and-control systems, the time criterion in a latency-critical
application and the apperance-location criterion for safety-critical

applications where every small change needs to be tracked.

B ABLATION: VMAP DEFINITION

In the main paper, we define a True Positive Set as a set in which
at least one of the bounding boxes of the object in the set has an
IOU > IOU;y,. One may question the decision of taking at least one
of the bounding boxes in the set. In this section, we verify whether
the number of frames detected within a set is a critical parameter.
We do this by performing the experiments with synthetic detectors
as done in the main paper. The following definitions are compared:




Video Recall False Positives
P-R  VP-VR P-R VP-VR

Detector

bus

MEGA-BASE 67.06 56.47 398.0 44.0

DFF 64.71  43.53 321.0 7.0

FGFA 57.65  50.59 156.0 28.0
RDN 69.41  52.94 292.0 12.0
MEGA 7294  55.29 508.0 26.0

dog

MEGA-BASE 79.81 57.08 1220.0 122.0
DFF 71.46 52.9 1489.0  120.0
FGFA 79.35 5731 929.0 71.0
RDN 83.06 62.41 1041.0 131.0
MEGA 85.15 65.66 1078.0  96.0

domestic cat

MEGA-BASE 77.27 27.27 307.0 0.0

DFF 63.64 27.27 437.0 41.0
FGFA 81.82 22.73 242.0 5.0
RDN 72.73  36.36 188.0 0.0
MEGA 13.64 9.09 33.0 0.0
elephant
MEGA-BASE  90.09 61.26 749.0 8.0
DFF 89.19 61.26 502.0 40.0
FGFA 85.59 56.76 556.0 21.0
RDN 92.79 73.87 772.0 30.0
MEGA 95.5 81.98 1019.0 27.0
fox
MEGA-BASE  61.9 57.14 15.0 2.0
DFF 66.67 57.14 46.0 1.0
FGFA 66.67 61.9 30.0 3.0
RDN 7143  66.67 28.0 3.0
MEGA 76.19 66.67 28.0 3.0
giant panda
MEGA-BASE 70.97 59.68 164.0 9.0
DFF 70.97 53.23 373.0 2.0
FGFA 69.35  59.68 188.0 1.0
RDN 77.42 53.23 228.0 1.0
MEGA 30.65 30.65 3.0 3.0

Table 7: Table showing false positive comparison of PR and
VP-VR operating points

(1) VmAP This is the baseline used in the paper. At least one
bounding box in the set must have an IOU > IOUy, as
compared to the ground truth boxes.

(2) VmAP_N: An alternative to using a single frame per set is to
use a percentage of the set length as a threshold for counting
a true positive. For example, in the VmAP_5 definition, a

set is considered true positive if the detected bounding box
matches the ground truth boxes in at least 5% of the frames

within the set.

C OPERATING POINT COMPARISON

Tables 5, 6 and 7 show the reduction in false positives when using
the confidence threshold corresponding to the optimal point on the
P-R and VP-VR curves. As shown in the main paper, the number
of false positives always decreases. In some cases, the decrease
in set recall (VR) is also observed, which can be improved using
traditional false-positive/false-negative trade-off using confidence
threshold tuning.

D POST-TRACKING ASSESSMENT

As discussed in the main paper, the Video Recall (VR) measure
follows the FR + Tracker measure more closely as compared to
the Frame Recall (FR) measure. Fig. 10 shows this trend in the
decreasing order of ground truth measure (FR + Tracker). This
indicates the suitability of the metric for measurement of the true
ability of an object detector, when it would be used in conjunction
with a tracker.
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Figure 9: The figure demonstrates how the different VmAP definitions respond to increase in different types of bias. We find that
as the % value on number of frames in a set is increased, the behavior of the metric resembles that of mAP. In higher percentage
values, a true positive set becomes very difficult to achieve resulting in extremely low scores. We, therefore, recommend the
usage of VmAP as defined in the main paper.
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Figure 10: The detectors are presented in the order of ground truth rankings (Frame Recall using a Detector + Ideal Tracker).
While the Frame Recall is low for some detectors (see FGFA, DETR), the post-tracking performance is quite high. On the other
hand, VR follows the post-tracking performance closely.
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