
Object Detection in Real-Time Systems: Going Beyond Precision

Anupam Sobti1 Chetan Arora2 M. Balakrishnan1

1IIT Delhi 2IIIT Delhi

Abstract

Applications like autonomous driving, industrial
robotics, surveillance, and wearable assistive technology
rely on object detectors as an integral part of the system.
Thus, an increase in performance of object detectors
directly affects the quality of such systems. In the recent
years, convolutional neural networks (CNNs) and its
variants emerged as the state of art in object detection,
where performance is usually measured either in terms
of mean average precision (mAP) or number of frames
processed per second (fps). Many applications which
use object detectors are resource constrained in practice.
Even though it is clear from the published results, that
a frame-level analysis of the system in terms of mAP or
fps proves the superiority of one algorithm over the other,
we observe that such metrics do not necessarily apply to
real time applications with resource constraints. A slower
algorithm even though highly accurate may need to drop
frames to maintain the necessary frame rate and lose on
the accuracy. We propose a closer look at the metrics used
for performance in real-time applications, and suggest
some new evaluation criterion. Our comparison of state
of the art detectors on these metrics has also thrown
some surprises in terms of conventional wisdom, which
we present in this paper. Our framework is available
at https://www.github.com/anupamsobti/object-detection-
real-time-systems.

1. Introduction
Object Detection is the task of localizing and classify-

ing objects in a given image. Applications such as assisted
and autonomous driving [9], navigation aids for visually im-
paired [21], and robotics applications [13] use object detec-
tor module as an integral step for motion planning, land-
mark detection etc. The efficacy of these detectors on a set
of images is typically measured using conventional metrics
like precision and recall. For evaluating performance on
video input, True positives (TP), False Positives (FP), True
Negatives (TN) and False Negatives (FN) determined using
the Jaccard index criteria are simply accumulated over all

(a) A slower running detector which has a higher accuracy has to
skip frames in order to maintain real-time operation. When too
many frames have to be skipped to keep up with the real-time per-
formance, a lot of pedestrians go undetected resulting in a poor
performance on the application level.

(b) A fast running detector with lower accuracy is able to run de-
tections on all frames but unable to detect all pedestrians in the
frame. Nevertheless, it may still outperform a slower detector.

Figure 1: There are a number of factors which affect the
performance of detectors under different constraints. We
discuss some of these constraints and situations. We also
suggest an evaluation criterion which can capture this infor-
mation and take the evaluation of object detectors closer to
the application performance.

frames of the video. Jaccard index, more commonly known
as IoU is the intersection over union of the bounding box
predicted using the object detector under consideration with
that given in the ground truth. A detection is considered
as positive if the Jaccard Index is greater than a threshold.
Precision-Recall curves are then plotted for different values
of the threshold of the detector and Mean Average Precision
(mAP) is often used as a measure of how well the detector
performs.

However, in an end to end application, with a live stream
being captured at a constant rate, a simple accumulation
over frames makes little sense. Figure 1 shows how an ob-
ject detector which is better in terms of conventional ac-
curacy might perform relatively poorly on the application
level. If an algorithm is able to detect a certain object, say a
person in one frame of the video, one can simply track the
person in the following frames using simple object trackers.



So, the detection performance in the consecutive frames be-
comes redundant. It also makes sense to reward early de-
tections since the detections thereafter can be obtained rela-
tively easily using trackers. By filtering the bounding boxes
using a spatio-temporal correlation (in successive frames),
false positives could be reduced [10]. However, conven-
tional precision-recall metrics do not allow such heuristics
to be evaluated for an algorithm, when acting as a module
in an end to end application pipeline.

In various applications like autonomous driving, indus-
trial or domestic robotics, navigation systems, it is often
important that the objects in the view are detected before
a specified minimum distance and the information is pre-
sented to the user/system within a time limit such that ap-
propriate decisions can be made. E.g., in an autonomous
driving scenario, a pedestrian should be detected at a dis-
tance far enough, so that brakes could be applied in case
the pedestrian is in the driving path and the car can come
to a halt or find an alternate path avoiding the pedestrian.
Similarly, a visually impaired person walking towards a
stray dog, in an assistive system like MAVI [21], should
be alerted in advance before actually disturbing the dog.

The notion of a decision distance has also been intro-
duced by Fregin et al. in [12], which is the minimum dis-
tance before which the system must detect the state of a
traffic light with sufficient time to halt the car. Using this
insight, we propose the number of objects detected before a
specified minimum distance as a metric for applicability to
real-time systems. We present results for the task of pedes-
trian detection in this paper. The analysis is done on com-
plete video sequences. The analysis method can however,
be extended to other object classes as well.

The major contributions of the paper are as follows:

• We suggest a new evaluation criterion to predict util-
ity of an object detection algorithm in an end to end
application. The complete system, with an object pre-
diction module, can therefore be analyzed as a black
box along with integration of other heuristics.

• The real time performance requirement with a com-
putation budget can impede the accuracy of an object
detection system because of frame dropping. We iden-
tify the hardware resources/power budget required to
achieve certain accuracy in such applications. Con-
versely, we find the best performing class of de-
tectors/systems given the constraints of hardware re-
sources/power budget along with real time perfor-
mance requirement.

2. Related Work
In this section, we describe the work which relates to the

analysis of object detectors in the bigger picture of system-
level integration. Therefore, we discuss three major areas in

which the related work has had a direct impact on computer
vision applications, namely Object Detection, Tracking and
the metrics which have been used to evaluate these.

Object Detection: Object detection has been widely ex-
plored in challenges like COCO Detection Challenge [22],
ILSVRC [2], and Pascal VOC [11]. In recent years, the use
of deep networks for the task has led to major strides in
the frame-level accuracy. However, at ∼ 95% recall, state
of the art object detectors still make about 10× more er-
rors than human baseline [26]. With deep networks like
Inception-v4 [25] having hundreds of convolutional layers,
one of the major disadvantages of the newer techniques
with respect to traditional algorithms have been the sig-
nificantly higher amount of memory and compute power
needed. Researchers have noticed this and suggested var-
ious techniques to reduce the hardware requirement using
model compression methods like quantization, hashing etc.
or by using entirely different architectures [17, 15].

Howard et al. [15] have proposed a new streamlined ar-
chitecture that uses depth-wise separable convolutions to
build light weight deep neural networks. They have intro-
duced new simple global hyper-parameters that efficiently
trade off between latency and accuracy and allow the model
builder to choose the right sized model for their application
based on the constraints of the problem. Tiny YOLO [5]
is another effort for creating smaller models with a tradeoff
in accuracy. Distillation [14] has been proposed as a way
to better train a smaller network using a pre-trained deeper
and more accurate network.

Tracking: Given the performance of current state of the
art in object detection, it is common for system designers to
also use tracking to improve the performance of the overall
application. This can be done in two ways:

• Appearance/feature based tracking

• Tracking by detection

The appearance/feature based trackers can be used to re-
duce the number of frames to be processed by an object
detector. E.g., one could run object detector on every tenth
frame and use trackers to find object location for the inter-
mediate frames. Since, run time for the trackers are typi-
cally much less than object detectors, this can lead to many
fold increase in the runtime speed. However, no new de-
tections can be made during intermediate frames which can
adversely effect the accuracy. Methods like Lukas-Kanade
[6], Track-Learn-Detect (TLD) [20] tracker and other meth-
ods like Medianflow [19] are examples of such trackers. A
recent survey of tracking techniques using newer object de-
tectors can be found in [24].



Evaluation Metrics: Zhang et al. [26] analyze the gaps
for improvement of the frame-level accuracy as the evalua-
tion metric. They propose to evaluate quality of detections
using a miss rate Vs false positives per image (FPPI) crite-
ria.

The lack of more appropriate metrics has led to non-
uniform evaluation of different techniques, as observed by
Buch et al. [8]. For the problem of traffic light monitor-
ing, a similar observation has been made by Jensen et al.
in [18]. Fregin et al. [12] have suggested more appropriate
metrics for the problem which takes the evaluation measure
closer to application performance. A need for better metrics
has also been expressed by Bengler et al. [7]. Recent work
by Huang et al. [16] compares the detection techniques on
speed, accuracy and memory footprint.

Our work goes one step further and tries to answer the
following questions:

• Given a resource constrained platform (say con-
strained by energy), which detector/algorithm is best
for achieving the maximum application performance?

• How do we estimate the resources required when a cer-
tain application performance is desired?

This analysis intends to facilitate the system designers to
choose the best algorithms/detectors within their constraints
as well as provide an intuition to object detector designers
regarding the direction in which efforts are required to im-
prove system level application performance. To the best of
our knowledge, this is the first work addressing this prob-
lem.

3. Proposed Approach
As described using Figure 1, a better detector need not

detect objects in all the frames accurately. Instead a detec-
tor which is able to detect most people from a large distance
is perhaps better suited from an overall system perspective.
Therefore, we propose the number of people detected be-
fore a specified minimum distance as a measure of how well
the detector is expected to perform in an application. Based
on this assumption, we evaluate how different detectors per-
form in two scenarios:

• Infinite resource setting (IRS)

• Resource-constrained setting (RCS)

Before going into the details of these settings, we discuss
the details of the dataset used.

3.1. Dataset
We use sequences MOT-02, MOT-05, MOT-09, MOT-

10 and MOT-11 from MOT16 training dataset and ETH
Bahnhof from MOT15 training dataset. All these datasets
are part of Multi-object Tracking Challenge as described in

Dataset FPS Length Resolution
(no. of frames)

ETH-Bahnhof 15 1000 640× 480
MOT16-02 30 600 1920× 1080
MOT16-05 15 837 640× 480
MOT16-09 30 525 1920× 1080
MOT16-10 30 654 1920× 1080
MOT16-11 30 900 1920× 1080

Table 1: Details of sequences used from Multi-object Track-
ing Challenge [24].

[24]. Another specific observation about these datasets is
that the recording equipment has very limited vertical mo-
tion. Therefore, the world distance of a pixel at a specific
row number has little variation for the entire duration of the
video. This enables us to use row number as the measure
of distance of a point from the camera. The approach is
generalizable for a limited cases only and alternate tech-
niques like annotated depths/radial distance approximation
may be required in other scenarios. Since, pixel row num-
bers go from top to bottom, therefore, the value is inversely
related to the distance. See Figure 2 for a visual explana-
tion. To maintain uniformity of the evaluation criteria, we
resize all images to VGA (640× 480) resolution and down-
sample the videos to 15 FPS. Each frame in the video is
annotated with bounding boxes as well as an ID number for
all pedestrians. Note that a new ID is assigned if a person
is occluded in some intermediate frame and re-appears in a
later frame. This is the convention followed for the MOT
Challenge [24]. More details about the dataset are provided
in Table 1.

For a better insight into dynamics of these sequences,
we compute a histogram of the amount of time/frames for
which a person is visible in the videos. Figures 3 and 4 show
the histograms. Here, a video in which people (or the cam-
era or both) are moving fast will have a very low mean time
of presence and a video in which people are mostly station-
ary will have a high mean time of presence. It is important
to understand that a low mean time of presence imposes
a bigger challenge for the object detector since skipping a
few frames during processing of the video feed may result
in missing a lot of objects which came during the skipped
time interval. We also quantify this in Section 5.1. The
mean time of presence (as indicated in the figures 4 and 3),
is therefore inversely related to the entropy in the video. The
entropy here refers to the level of activity in the video.

3.2. Infinite resource setting
We define the speed at which the detector is able to

process the incoming stream (with frame rate measured in



Figure 2: We define row numbers as the pixel distances
which are indicative of the distance from the camera. We
pick the indicated distances to highlight the area of interest
where we see maximum pedestrian activity.

0 50 100 150 200
Number of frames a person stays

0

5

10

15

20

25

30

35

Nu
m

be
r o

f p
eo

pl
e

Mean = 33.39

Figure 3: Histogram of the number of frames for which peo-
ple stay in the ETH Bahnhof dataset video. The high density
around low times suggests that the people in the video move
rather quickly.

frames per second) as the Frame Processing Rate (FPR) of
the particular detector. In Infinite Resource Setting (IRS),
we are trying to establish the limit of various detectors.
If there are no constraints on the hardware resources, one
could use multiprocessing/multithreading techniques to run
a detector at a desired FPR. If one would like to reduce the
latency, then FPGA based accelerators/ASICs (Application
Specific Integrated Circuit) could also be designed. There-
fore, we analyze the various detectors here independent of
their FPR.

In our experiments, True Positives (TP) are defined as
the number of people who are uniquely identified in the
complete video. A detection proposed by the object de-
tector is matched against all the annotated bounding boxes

0 50 100 150 200 250 300
Number of frames a person stays

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f p
eo

pl
e

Mean = 196.24

Figure 4: Histogram of the number of frames for which
people stay in the video for MOT16-02 dataset. The high
density around larger time suggests that some people are
present in the video frame for a long time.

(ground truth) for that video frame. If the maximum over-
lap (Jaccard criteria) for the match is greater than 0.3, the
ID corresponding to the annotated bounding box is marked
detected and the pixel distance of the bottom of the bound-
ing box is noted as the distance of detection. Otherwise,
the proposed detection is marked as a false positive. False
negatives are defined as the number of people for whom
an ID was present but were not reported in any of the de-
tections. False positives are still defined in the traditional
sense, where all detections which do not correspond to a
bounding box in the annotated data are accumulated over
all frames.

In IRS, we measure the true positives/false positives for
different speeds of detector implementations (FPR) at dif-
ferent pixel distances. Results from this analysis are pre-
sented in Section 5.2.

3.3. Resource-constrained Setting
In Resource-constrained Setting (RCS), a detector is

only able to process a limited number of frames. A detec-
tor which runs at 5 FPR on a single CPU system can only
process 1 in 3 frames for a video recorded at 15 FPS. We
use the same matching technique as specified in last section
(Section 3.2) for the IRS. In RCS evaluation, detectors with
high accuracies may end up missing a lot of frames owing
to an FPR lesser than the video sampling rate, resulting in a
drop in the number of people identified.

Alternatively, one could buffer a few frames and then
process them in an offline manner. However, with such a
system, the latency increases with more and more frames in
the buffer and real-time operation is not possible. RCS rep-
resents the practical scenario a system designer faces when
a particular application needs to be realized, given the con-



straints of cost, energy and performance. Our results for
this setting in Section 5.3 provide interesting insights for
system designers of computer vision applications as well as
a method for object detection researchers to work on detec-
tors which have maximum effect on the application perfor-
mance.

4. Experimental Setup
Efforts like Google Object Detection API[1],

Darknet[23] have enabled easy to use object detection
frameworks. Cross-platform support from Tensorflow [4]
has made this analysis much easier. OpenCV [3] has been
of great assistance to the vision community in providing
cross-platform support for implementation of numerous
vision algorithms. We use Tensorflow and OpenCV on
four configurations: CPU + GPU, High-end CPU, Low-end
CPU and an ARM processor for the resource-constrained
setting described in Section 3.3. Details of the configu-
rations of these systems is provided in Table 2. We use
the pre-trained models for neural network based detectors
from the Tensorflow Model Zoo [1]. The models used
are shown in Table 3. We also include the pre-trained
HOG implementation from OpenCV in our comparison.
Mean average precision (mAP) is calculated using the
frame-based metrics described in Section 1.

For the Infinite Resource Setting described in Section
3.2, we generate the detections offline for all frames of the
videos. Since the video is sampled at 15 FPS, the num-
bers for true positives, false positives etc., are generated by
skipping enough frames to reach the required FPR. E.g. if
the processing speed is at 15 FPR, all frames are processed.
Similarly, every third frame is processed for an FPR of 5.
For RCS also, the FPR of an object detector implementation
is estimated by processing the videos and calculating the av-
erage time per frame. Thereafter, the accuracy numbers are
estimated in the same fashion as IRS, i.e., by sub-sampling
according to the FPR to be achieved.

5. Results
We present results in three domains. In Section 5.1, we

show the correlation of entropy (level of activity) of a video
to the FPR required to achieve a particular accuracy for the
same. In Sections 5.2 and 5.3, we discuss the results for
IRS and RCS settings described in Section 3. The videos
are downsampled to 15 FPS and resized to 640 × 480 for
maintaining uniformity. Note that, we skip frames in order
to downsample the video instead of just slowing it down
because we want to maintain the original dynamics of the
video, which essentially captures how fast/slow the pedes-
trians are moving in real time as seen in Section 3.1. There-
fore, one second of the video corresponds to one second of
wall clock time. The histogram of number of frames for
which people stay in the video for all the datasets together

Configuration Memory Clock Speed Power Rating
(microprocessor)

Xeon E5-1620 64GB 3.5GHz 140W
GTX 1080 8GB 1.7GHz 180W

i7-4790 CPU 16GB 3.6GHz 84W

Atom Z8350 2GB 1.44GHz 2W

RaspberryPi 3B 1GB 1.2GHz < 1W

Table 2: Details of Processing Units and the platforms used
for our experiments. We have used four configurations:
CPU + GPU, High-end CPU, Low-end CPU and an ARM
processor for the resource-constrained settings.

Model Name COCO mAP

ssd mobilenet v1 coco 21
ssd inception v2 coco 24
rfcn resnet101 coco 30
faster rcnn resnet101 coco 32
faster rcnn inception resnet v2 atrous coco 37

Table 3: The Tensorflow models from the model zoo for
various object detectors used in our experiments.

is shown in Figure 5. It can also be observed that the tail
of the distribution starts from around 100. Therefore, very
few people stay in the video for more than 100 frames. This
implies that if the detector has to skip more than 100 frames
to maintain real-time operation, it would miss most of the
people in the video.

5.1. Entropy Comparison
If the designer expects a fast moving scene, like count-

ing the number of people in a crowded scene, the entropy
of the video is likely to be higher as in Figure 3. On the
other hand, if the application is a security surveillance set-
ting where most people will be present for long durations
of time, e.g. if they stand inside the area being captured in
the video, then the entropy will be lower as in 4. Figure
6 shows that variation in FPR of the detector reduces the
number of people being detected by the system in a high
entropy video however, it remains relatively unaffected in a
low entropy video. Therefore, a video/scene context is also
an important factor in choosing the detection rates required
for the application.

5.2. Infinite Resource Setting (IRS)
In this section, we show the number of people who have

been detected upto a certain distance as per the criterion



0 100 200 300 400
Number of frames a person stays

0

20

40

60

80

100
Nu

m
be

r o
f p

eo
pl

e Mean = 74.35

Figure 5: Histogram of the number of frames for which
people stay in the video accumulated for all datasets. The
high density around low times suggests that the majority of
pedestrian are in the field of view for a relatively short time.

0 2 4 6 8 10 12 14 16
Frame Processing Rate (FPR)

0

50

100

150

200

250

C
u
m

u
la

ti
v
e
 C

o
u
n
t 

@
 p

ix
e
lD

is
ta

n
ce

 =
 4

8
0

bahnhof_faster_rcnn_inception

bahnhof-ssd-mobilenet
mot16-02-ssd-mobilenet
mot16-02-faster_rcnn_inception

Figure 6: The accuracy on Bahnhof dataset falls on using a
lower frame rate (Blue), while it remains relatively constant
for MOT16-02 video (Red) since the entropy is higher in
Bahnhof video. Therefore, the application being targeted
also determines the applicability of the detector.

discussed in 3. So, at a pixel distance of 260, all pedestri-
ans detected before crossing the 260th row in the video are
shown. The results are accumulated for different datasets.

Firstly, we show results on how many people are detected
in the complete frame, i.e., at a pixel distance of 480. In
IRS, all the detectors would run at the same FPR. Therefore,
we compare the number of people detected using different

0 2 4 6 8 10 12 14 16
Frame Processing Rate (FPR)

200

300

400

500

600

C
u
m

u
la

ti
v
e
 C

o
u
n
t 

@
 p

ix
e
lD

is
ta

n
ce

 =
 4

8
0

SSD Mobilenet
SSD inception
rfcn_resnet

faster_rcnn_resnet

faster_rcnn_inception

HOG
GroundTruth

Figure 7: Variation in the number of people detected at dif-
ferent FPRs of the detectors in a video sampled at 15 FPS.

detectors running at the same FPR. The Figure 7 shows that
the number of people detected follows the same trend as
the accuracy typically reported in the object detection liter-
ature. Therefore, mean average precision (mAP) acts as a
good criterion for the application performance if all the de-
tectors were able to run at the same FPR. The plot shows
the variation of number of people detected when the FPR
varies from 2 to 15 while processing a video recorded at 15
FPS. Note that further increase in the FPR of the detector
will not result in increased accuracy since all the frames of
the video are being processed when the detector is running
at an FPR of 15. The ground truth is not varied with FPR
since the number of people in the video remains the same.

Now, we look at how detections at different distances are
affected with more/less precise detectors. A detector which
can detect objects from a higher distance is preferred since
it provides enough time to the system to make a decision
based on the detection. Figure 8 shows that the detectors
which are better (as per mAP) are able to detect more num-
ber of people at a greater distance. However, this holds only
when all the detectors are running at the same FPR, i.e. 15
in this case. We evaluate the case of different FPRs of de-
tectors in Section 5.3.

Another observation in this analysis is regarding the
False Positives. We analyzed the distances at which dif-
ferent detectors produced false positives. A detection is de-
clared a false positive if the bounding box does not have an
overlap with any annotated bounding box which is greater
than 0.3. As expected, the false positives at high distances
are disproportionately high.



250 260 270 280 290 300 310 320 330
Pixel Distance (Inversely related to distance)

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 C

o
u
n
t

SSD Mobilenet
SSD inception
rfcn_resnet

faster_rcnn_resnet

faster_rcnn_inception

HOG
GroundTruth

(a) Number of people detected on a CPU+GPU system

250 260 270 280 290 300 310 320 330
Pixel Distance (Inversely related to distance)

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 C

o
u
n
t

SSD Mobilenet
SSD inception
rfcn_resnet

faster_rcnn_resnet

faster_rcnn_inception

HOG
GroundTruth

(b) Number of people detected on an i7 system

250 260 270 280 290 300 310 320 330
Pixel Distance (Inversely related to distance)

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 C

o
u
n
t

SSD Mobilenet
SSD inception
rfcn_resnet

faster_rcnn_resnet

faster_rcnn_inception

HOG
GroundTruth

(c) Number of people detected on an Intel Atom System

250 260 270 280 290 300 310 320 330
Pixel Distance (Inversely related to distance)

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 C

o
u
n
t

SSD Mobilenet
SSD inception
HOG
GroundTruth

(d) Number of people detected on a Raspberry Pi Model 3B

Figure 9: The results vary a lot on different platforms. It is clear that the faster detectors perform much better than the more
accurate but slower detectors. As we go towards low-resource devices, smaller networks perform even better. The depletion
of performance of high-end detectors is evident in all systems without a high end GPU (faster rcnn). The cross-overs in
Figures 9b,9c indicate that depending on criticality of detecting objects from a distance, one detector may be better than the
other. Faster detectors do better at smaller distances, however, more accurate detectors (still running at a reasonable speed
with respect to entropy of video) work better at a larger distance.

5.3. Resource-constrained Setting (RCS)

In RCS, the Frame Processing Rate (FPR) of a detec-
tor on the given system becomes very crucial. The FPRs
of different detectors are provided in Table 4. The ”-”
indicates the field was not calculated because the model
couldn’t be loaded into the memory. Figure 9 shows the
distance-wise comparison of number of people detected on

different platforms. This is where the results start reversing
from conventional wisdom. On the most high-end system
with a CPU as well as a GPU (details in Table 2) shown
in Figure 9a, one would expect that the detector with high-
est mAP yields maximum accuracy. However, rfcn resnet
and faster rcnn resnet emerge as the winners. This is be-
cause the detectors have a reasonable FPR apart from be-
ing accurate. On a CPU only system shown in Figure 9b,



250 260 270 280 290 300 310 320 330
Pixel Distance (Inversely related to distance)

0

100

200

300

400

500

C
u
m

u
la

ti
v
e
 C

o
u
n
t

SSD Mobilenet
SSD inception
rfcn_resnet

faster_rcnn_resnet

faster_rcnn_inception

HOG
GroundTruth

Figure 8: The figure shows how detectors which are better
as per their mAP value are able to detect more objects at all
distances. The numbers are calculated assuming an FPR of
15 for all detectors.

deeper neural networks lose their edge because of signifi-
cantly lower FPRs.

Most portable applications which run on a battery would
prefer a low power envelope. As shown in Table 2, a power
budget of < 2W is available for Intel Atom/Raspberry Pi
devices. Clearly, FPR makes a bigger difference on such
devices. SSD Mobilenet is able to perform much better than
other detectors primarily because of having a reasonable ac-
curacy at a very high processing rate, thus making it an ideal
choice for portable systems. On an Intel Atom CPU, as seen
in Figure 9c, SSD Inception performs better at higher dis-
tances owing to its higher accuracy, however HOG takes
over after a certain limit because it is able to run at a faster
pace. This indicates that an application which would need
more time to make decisions like path planning/alert gen-
eration should work with a detector with higher accuracy
instead of directly choosing speed over accuracy for low-
power systems.

6. Conclusion
Comparison of object detectors on the basis of mAP has

been helpful in achieving a higher detection accuracy on a
frame-by-frame basis. However, in real-time applications
where object detection is a input to other modules in the
pipeline and the resources are constrained, higher mAP may
not result in the best choice of detector. We have shown here
that as the resources are scaled down, speed of the detec-
tor becomes an important factor in determining the success
of the object detector. However, accuracy remains impor-
tant in such scenarios as well, even if at the cost of higher

Platform Model Name FPR

CPU + GPU OpenCV HOG 225
ssd mobilenet 12.46
ssd inception 11.41
rfcn resnet 3.71
faster rcnn resnet 2.86
faster rcnn inception 0.86

CPU OpenCV HOG 15.95
ssd mobilenet 8.03
ssd inception 5.38
rfcn resnet 0.35
faster rcnn resnet 0.14
faster rcnn inception 0.04

Atom OpenCV HOG 1.99
ssd mobilenet 1.54
ssd inception 0.80
rfcn resnet 0.041
faster rcnn resnet 0.016
faster rcnn inception 0.005

Raspberry Pi OpenCV HOG 0.24
ssd mobilenet 1.21
ssd inception 0.61
rfcn resnet -
faster rcnn resnet -
faster rcnn inception -

Table 4: Frame Processing Rates (FPRs) of different detec-
tors on a given system. Refer to Table 2 for details of the
platforms.

run-time since it enables the system to take better decisions
by detecting objects at a higher distance. Moreover, differ-
ent application objectives may demand different detection
rates. High entropy scenarios would favor speed over ac-
curacy, however low entropy scenarios would work better
with more accurate detectors at reasonable speed. Our eval-
uation criteria also allows testing of heuristics like spatial
and temporal pooling, tracking by detection or other similar
techniques to reduce false positives and increase reliability
of the complete system.

7. Acknowledgement

We would like to thank Rajesh Kedia for discussions
which were helpful in materializing some of these ideas.
Anupam Sobti has been supported by Visvesvaraya PhD
Fellowship by the Government of India. Chetan Arora has
been supported by Visvesvaraya Young Faculty Research
Fellowship and Infosys Center for Artificial Intelligence.



References
[1] Google Object Detection API.

https://research.googleblog.com/2017/06/supercharge-
your-computer-vision-models.html.

[2] IMAGENET Large Scale Visual Recognition Challenge.
http://image-net.org/challenges/LSVRC.

[3] OpenCV. www.opencv.org.
[4] Tensorflow. www.tensorflow.org.
[5] Tiny YOLO. https://pjreddie.com/darknet/yolo.
[6] S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-

fying framework. International journal of computer vision,
56(3):221–255, 2004.

[7] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller,
and H. Winner. Three decades of driver assistance systems:
Review and future perspectives. IEEE Intelligent Trans-
portation Systems Magazine, 6(4):6–22, 2014.

[8] N. Buch, S. A. Velastin, and J. Orwell. A review of com-
puter vision techniques for the analysis of urban traffic.
IEEE Transactions on Intelligent Transportation Systems,
12(3):920–939, 2011.

[9] C. Caraffi, T. Vojı́ř, J. Trefnỳ, J. Šochman, and J. Matas. A
system for real-time detection and tracking of vehicles from
a single car-mounted camera. In International IEEE Con-
ference on Intelligent Transportation Systems (ITSC), pages
975–982. IEEE, 2012.

[10] M. Enzweiler and D. M. Gavrila. Monocular pedestrian de-
tection: Survey and experiments. IEEE transactions on pat-
tern analysis and machine intelligence, 31(12):2179–2195,
2009.

[11] M. Everingham, L. Van Gool, C. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes
challenge 2012 results, 2012. http://www.pascal-
network.org/challenges/VOC/voc2011/workshop/index.html.

[12] A. Fregin and K. Dietmayer. A closer look on traffic light
detection evaluation metrics. In IEEE International Con-
ference on Intelligent Transportation Systems (ITSC), pages
971–975. IEEE, 2016.

[13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[14] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[16] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al.
Speed/accuracy trade-offs for modern convolutional object
detectors. arXiv preprint arXiv:1611.10012, 2016.

[17] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and <0.5 MB model size. arXiv
preprint arXiv:1602.07360, 2016.

[18] M. B. Jensen, M. P. Philipsen, A. Møgelmose, T. B. Moes-
lund, and M. M. Trivedi. Vision for looking at traffic lights:

Issues, survey, and perspectives. IEEE Transactions on In-
telligent Transportation Systems, 17(7):1800–1815, 2016.

[19] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward
error: Automatic detection of tracking failures. In Inter-
national conference on Pattern recognition (ICPR), pages
2756–2759. IEEE, 2010.

[20] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-
detection. IEEE transactions on pattern analysis and ma-
chine intelligence, 34(7):1409–1422, 2012.

[21] R. Kedia, K. Yoosuf, P. Dedeepya, M. Fazal, C. Arora, and
M. Balakrishnan. Mavi: An embedded device to assist mo-
bility of visually impaired. In International Conference on
VLSI Design and International Conference on Embedded
Systems (VLSID), pages 213–218. IEEE, 2017.

[22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[23] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger.
arXiv preprint arXiv:1612.08242, 2016.

[24] A. Sadeghian, A. Alahi, and S. Savarese. Tracking the un-
trackable: Learning to track multiple cues with long-term
dependencies. arXiv preprint arXiv:1701.01909, 2017.

[25] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-First AAAI Conference
on Artificial Intelligence, pages 4278–4284, 2017.

[26] S. Zhang, R. Benenson, M. Omran, J. Hosang, and
B. Schiele. How far are we from solving pedestrian detec-
tion? In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1259–1267, 2016.


