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Geospatial data is foundational to understanding systemic changes that our society is undergoing. Whether it is changing land cover,

changes in public infrastructure, or natural resources, supervised machine learning algorithms are being found increasingly useful.

However, annotation of geospatial data is difficult due to large areas of interest and geographic variation in different areas. In this

work, we use the example of cool roof classification to demonstrate an active learning method that is specifically designed to take

benefit from the geospatial setting. Cool roofs are reflective coatings on roofs that keep the building cooler and thus also reduce

electricity requirements for cooling. In prior work[16], pipelines for this classification have been developed through building footprint

extraction and reflectance estimation through feature-based classification. We adopt a similar methodology for classification and

in this paper, we propose two geospatial-specific AL methods that benefit from temporal uncertainty estimate and overconfident

predictions resampling. We verify the efficacy of our data annotation by verifying the classification results through an actual decrease

in land surface temperature. We also develop a tool for fast and easy labelling of annotations with active learning in the loop. This

helps us reduce the annotation time for a city from a few days to a few hours while achieving similar accuracies in ∼50% training

iterations. Our thermal validation using Landsat-derived Land Surface Temperature (LST) data confirms that annotated cool roofs

consistently exhibit lower surface temperatures during summer months, with statistically significant differences supported by the

Mann-Whitney U Test.
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1 Introduction

The intensifying effect of Urban Heat Islands (UHI) presents a significant challenge to the sustainability of urban

development, particularly in rapidly growing cities across India. As urban areas become increasingly dense, urban heat

retention caused by the extensive use of heat-absorbing materials, such as concrete and asphalt, results in elevated

temperatures that are often several degrees higher than surrounding rural regions. This temperature differential not

only exacerbates energy consumption, particularly during the hot summer months but also increases the demand for

air conditioning, which in turn contributes to higher greenhouse gas emissions and worsens global warming [26].
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Among the various strategies proposed to mitigate the effects of UHI, cool roofs have gained prominence as a

cost-effective and environmentally sustainable solution. These roofs, made from materials that reflect more sunlight and

emit heat efficiently, have been shown to reduce both surface and indoor temperatures. Reflecting a significant portion

of the incoming solar radiation, cool roofs help to lower the ambient temperature of urban areas, thus alleviating the

strain on air conditioning systems and reducing energy consumption. Furthermore, the reduction in urban temperatures

also contributes to better public health and improved urban comfort [1, 17]. Multiple studies have indicated that cool

roofs can achieve temperature reductions of up to 3
◦
C in urban environments [2], providing a substantial contribution

to mitigating the impact of urban heat.

However, despite the considerable benefits of cool roofs, several challenges hinder their large-scale implementation,

particularly in Indian cities. Roof materials can vary widely even within the same city and urban environments are

characterized by complex patterns of building density, roof geometry, and surrounding microclimates. These factors

pose significant hurdles in accurately identifying and evaluating cool roofs using traditional methods such as manual

surveys or small-scale inspections [18]. Remote sensing technologies, particularly high-resolution satellite imagery,

offer a promising alternative by enabling large-scale monitoring of urban thermal conditions. However, even with

advances in remote sensing, two critical challenges remain: (1) the high cost and inefficiency of manual annotation

required to train machine learning models and (2) the difficulty of calibration due to the inherent variability of urban

landscapes, such as differences in roof materials, seasonal effects, and low resolutions sensor inconsistencies. These

factors make it difficult to apply classification models effectively in diverse geographic regions, leading to inaccuracies

in cool roof identification [28].

To address these challenges, in this paper, we implemented a hybrid approach that combines satellite-based observa-

tions with a Multilayer Perceptron (MLP) to efficiently classify cool roofs in large urban areas. Active learning has

proven to be a valuable tool in remote sensing applications, allowing significant reductions in both annotation effort and

calibration inconsistencies—i.e., variations in model performance due to domain shift (changes in geographic regions),

data quality, or environmental conditions that affect the consistency of predictions across space and time—while

simultaneously improving model performance [24]. Our methodology incorporates an active learning framework

designed to minimize annotation costs while improving model performance. We propose two new acquisition functions,

named Cross Time Prediction Variance (CTPV) and Adaptive Disparity Acquisition Sampling (ADS), to strategically

select the most informative samples for labelling. Active learning reduces the need for extensive manual annotation

while enhancing classification accuracy. Furthermore, our approach addresses temporal inconsistencies using CTPV

and overconfident predictions using ADS by prioritizing the most informative and confident samples, ensuring more

reliable predictions across varying climatic and urban conditions.

In addition to the active learning framework, this study also performs a detailed thermal analysis of cool roofs using

Landsat-8 thermal data. Our analysis demonstrates that cool roofs consistently show a reduction in LST compared to

non-cool roofs. This analysis highlights the long-term cooling benefits of cool roofs, which are particularly pronounced

during the summer months when the effects of UHI are most severe [3]. To evaluate the localized cooling effects of cool

roofs, we compare the LST of cool roofs with their neighbouring buildings within a 100-meter radius.

To streamline the process of labelling large datasets and facilitate the scaling of cool-roof identification, we develop a

user-friendly annotation platform. This platform is designed to simplify the labelling of satellite imagery and provide

a scalable solution for the creation of high-quality data sets. It is adaptable to other remote sensing applications and

offers broad utility in various geospatial research fields.

The main contributions of this work are:
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• Novel Active Learning Acquisition Functions: We propose Cross-Time Prediction Variance (CTPV) and

Adaptive Disparity Sampling (ADS) for geospatial active learning in cool roof classification. CTPV prioritizes

temporally stable samples, ADS targets overconfident misclassifications.

• Thermal Analysis of Cool Roofs: Using Landsat-8 thermal data, we demonstrate that cool roofs consistently

lower land surface temperature (LST) compared to non-cool roofs. This indicates correct classifications and the

efficiency of cool roofs in reducing temperature.

• Satellite Data Annotation Tool: A versatile and user-friendly platform for labelling satellite data, facilitating

large-scale identification of cool roofs and adaptable to other remote sensing tasks.

The remainder of this paper is organized as follows. Section 2 reviews the existing methods in remote sensing-based

cool roof identification and active learning frameworks. Section 3 details our data sources, feature extraction methods,

dimensionality reduction techniques and the MLP-based classification approach. Section 4 details the experimental

setup for the acquisition functions and the associated training procedure. Section 5 presents experimental results,

comparing the performance of different active learning strategies in urban environments. Finally, Section 6 summarizes

the main findings, discusses limitations, and suggests future research directions.

2 Literature Review

Urban Heat Islands (UHI) pose a significant environmental challenge in urbanized areas, where infrastructure materials

such as asphalt and concrete absorb and retain heat, leading to elevated local temperatures and increased energy

demand [26]. These increases in temperature contribute to health risks, higher cooling costs, and amplified climatic

impacts, necessitating effective mitigation strategies.

An approach widely studied is the implementation of cool roofs, which utilize materials with high solar reflectance

and thermal emissivity to reduce heat absorption [1, 17]. Empirical evidence suggests that increasing roof reflectivity

can lower ambient temperatures by up to 3°C in urban settings [2]. This cooling effect improves indoor thermal comfort

and contributes to overall energy efficiency.

2.1 Use of Geospatial Data in Urban Analysis

Geospatial data is a widely applicable tool in urban analysis. Recent studies have explored the use of multi-spectral

satellite data, such as Sentinel-2 imagery, for environmental and land-use monitoring applications [13, 19]. The detection

of brick kilns using spectral bands, as demonstrated by Imaduddin et al. [13], exemplifies how remote sensing techniques

can identify industrial activities that contribute to urban heat and air pollution. Similarly, land use and land cover

(LULC) classification methods utilizing machine learning in Google Earth Engine have provided accurate urban mapping

results [19].

Remote sensing has become an essential tool for examining UHIs and Identifying cool roofs, using satellite platforms

(for example, Sentinel-2 and Landsat-8) to measure surface reflectance, albedo, and land surface temperature (LST) [14, 16,

28]. High-resolution satellite imagery enables both spatial and temporal analysis of urban thermal conditions. However,

issues such as cloud cover, atmospheric interference, and coarse sensor resolution can restrict data quality [18].

Automated detection and mapping of cool roofs remain key challenges due to urban variability and lack of labelled

datasets [7]. Recent advances in remote sensing and machine learning, particularly Active Learning (AL), are
effective in geospatial applications. While active learning remains underexplored for cool-roof classification. To address
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these gaps, we critically examine the limitations of traditional AL approaches and propose novel acquisition strategies

tailored for cool-roof detection.

2.2 Limitations of Existing Active Learning Strategies

Conventional active learning (AL) has been widely applied to remote sensing and image classification tasks, often using

uncertainty-based sampling to prioritize high-uncertainty samples and diversity-based sampling to ensure feature space

coverage [18]. However, in the context of cool-roof classification, these methods often fall short due to domain-specific

challenges like temporal variation and material heterogeneity.

Temporal Inconsistency-Based Active Learning (TIR-AL)[27] and Temporal Output Discrepancy (TOD)[12] address

challenges related to model forgetting by selecting samples based on inconsistencies during various training phases,

while TOD assesses sample informativeness by evaluating prediction discrepancies across different optimization steps.

Despite proving effective in multiclass classification and semantic segmentation, these strategies encounter limitations

in binary classification tasks like cool-roof detection. Specifically, TOD-based methods may struggle to identify subtle

differences between roof reflectance, and clustering approaches such as TypiClust [10] often require a large number of

samples to construct useful decision boundaries, thereby diminishing sample efficiency.

To address these limitations, we introduce two novel acquisition functions—Cross Time Prediction Variance
(CTPV) and Adaptive Disparity Acquisition Sampling (ADS) - that are specifically designed to maximize label

efficiency for cool-roof classification:

• CTPV selects a minimal subset of samples with high temporal prediction variance, capturing cases most affected

by seasonal changes and improving generalization across time.

• ADS emphasizes label efficiency by selecting only those samples that lie in high-disparity regions of the feature

space, helping the model quickly learn class boundaries with fewer examples.

Together, CTPV and ADS reduce the number of labelled samples needed to reach high classification accuracy, without

compromising performance. By explicitly accounting for urban-specific challenges, our method achieves greater sample

efficiency than existing AL techniques, making it well-suited for scalable deployment in resource-constrained urban

monitoring scenarios.

2.3 Classification of Roof Materials

Classifying roof materials using satellite and aerial imagery is a crucial step in understanding urban heat dynamics

and identifying cool roofs. Traditional classification approaches rely on supervised learning models that require large

annotated datasets. However, these methods face several challenges, including spectral similarity between materials,

seasonal variations, and variations in roof conditions.

Several recent studies have explored automated rooftop classification methods. Park et al. [20] proposed a CNN-based

remote sensing approach to detect and classify rooftops in urban areas to support cool roof applications. Their study

demonstrated how aerial imagery and machine learning techniques could be used to classify roofs based on surface

reflectance. Similarly, Chen and Li [6] developed a deep learning-based rooftop detection method using convolutional

neural networks (CNN) andMask R-CNN for post-earthquake building assessment. Their approach successfully extracted

rooftop features from aerial images, highlighting the potential of deep learning models in building classification tasks.

A recent study,What’s Up On The Roof: Tracking Cool Roofs in India with Satellite Imaging [16], introduced a cool

roof tracking system that classifies roofs into cool and non-cool categories based on their reflectance properties. Their
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work demonstrated the feasibility of using satellite-derived reflectance. Similarly to [16], we utilize satellite imagery to

classify cool and non-cool roofs. However, such methods are dependent on high-quality city aerial data and require

calibration Our approach expands on their methodology by integrating active learning to reduce the annotation cost.

We verify the correctness of cool roofs by showing the land surface temperature (LST) differences between cool and

non-cool roofs. We also show the effect of cool roofs on LST by comparing cool roofs and their neighbouring structures

within a radius of 100m to account for localized microclimatic effects.

Annotating high-resolution satellite imagery is both resource-intensive and time-consuming. Existing annotation

tools often lack flexibility or require extensive customization [5, 29]. To overcome these issues and reduce the cost and

time of annotation, we developed a user-friendly annotation tool that is adapted to the classification needs of the

cool roof.

Key Contributions of This Work: Building on existing research on active learning, remote sensing, and UHI mitiga-

tion, our study presents novel methodologies and tools that address persistent gaps in these domains. The primary

contributions are as follows:

(1) We propose Cross Time Prediction Variance (CTPV), an acquisition function that accounts for temporal

variations in satellite imagery. Unlike simple random-date approaches, CTPV identifies dates wheremodels exhibit

inconsistent predictions and leverages these insights to drive sample selection. Comprehensive comparisons

indicate that CTPV-selected samples deliver more robust model performance than randomly chosen ones,

highlighting the reliability and stability of the method.

(2) We introduce Adaptive Disparity Acquisition Sampling (ADS), a novel approach that combines uncertainty-

based selection with a disparity metric to pinpoint highly informative samples. Empirical evaluations demonstrate

that ADS surpasses established methods e.g., random selection, entropy-based acquisition [22], margin sampling

[4], and BALD [11] in both data efficiency and classification accuracy, significantly lowering annotation costs in

active learning pipelines.

(3) We also elucidate the thermal effect of cool roofs, consistently observing lower LST values compared to non-cool

roofs. The statistical significance of these differences is supported by the Mann-Whitney U test, confirming the

robustness of our observations.

(4) Lastly, we present a satellite data annotation tool designed to accelerate the labelling process for high-

resolution roof reflectance datasets. Its intuitive interface and adaptable scripts reduce technical barriers to

large-scale data annotation, supporting a wide range of geospatial research and operational tasks.

In general, these contributions advance the methodology in active learning and remote sensing for roof classification

and calibration, offering practical insights for urban climate resilience planning and strengthening the role of cool roofs

in combating UHIs.

3 Methodology

This section outlines the framework and methodologies employed to address the research questions posed earlier.

We first describe the acquisition and preprocessing of Sentinel-2, followed by the architecture of our MLP classifier

and its training procedure. Subsequently, we introduce our active learning framework, including two complementary

acquisition functions (CTPV and Adaptive Disparity Sampling). Finally, we detail our thermal analysis approach using

Landsat data to compare cool and non-cool roofs.
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3.1 Data Acquisition and Preprocessing

Satellite Imagery and Building Polygons. Following Lalwani et al. [16], we leveraged Sentinel-2 satellite imagery to

extract 8 spectral bands (e.g., Aerosol, Blue, Green, Red, NIR) for feature generation. These bands offer comprehensive

spectral information that is highly indicative of the material and reflectance properties [8]. Building footprints were

obtained from the Google Open Buildings dataset [23], which provides detailed polygonal outlines of rooftops across

diverse geographic regions.

Spatial Alignment. Next, each roof polygon from the Open Buildings dataset was spatially aligned with the cor-

responding Sentinel-2 image tiles. This step allowed us to precisely locate the spectral information for each roof

polygon.

Feature Extraction and Normalization. From each roof polygon, we extracted the pixel values for eight Sentinel-2 bands.

These were then aggregated into a feature vector, ensuring that we captured both spectral and spatial properties. All

features were scaled into the range [0, 1] using a MinMaxScaler to prevent any single band or feature from dominating

during model training.

Dimensionality Reduction (PCA).. Although we focus on eight spectral bands, additional derived indices or texture

characteristics can lead to high-dimensional representations. To balance expressiveness and computational efficiency,

we employed Principal Component Analysis (PCA) and retained 30 principal components. These components captured

most of the variance and served as input to our downstream classification model.

3.2 Model Architecture

We adopt a multilayer perceptron (MLP) for the binary classification task of identifying cool versus non-cool roofs.

The primary motivation for selecting an MLP is its computational efficiency and previous findings by Lalwani et al.[16],

which demonstrated the effectiveness of a compact MLP on roof classification tasks. After dimensionality reduction

(Section 3.1) yields 30 principal components, these components feed into the MLP architecture described below.

Network Design. As summarized in Table 1, the MLP comprises:

• Input Layer: Accepts the 30-dimensional PCA feature vector.

• Hidden Layers: Two fully connected (dense) layers with 64 and 8 neurons, respectively. We employ the Rectified

Linear Unit (ReLU) activation function in each hidden layer to introduce nonlinearity.

• Output Layer: A single neuron with a sigmoid activation function produces a probability score in [0, 1],
indicating the likelihood of a roof being classified as cool.

Parameter Summary. Table 1 details the dimensions and total parameters for each layer. Implementation specifics,

optimization details, and hyperparameter choices are provided in Section 4.2, along with our training procedure.

3.3 Active Learning Framework

Although supervisedML has beenwidely successful, the task of labelling extensive imagery in varied urban environments

is costly and labour-intensive. To address this issue, we incorporate active learning (AL), which systematically chooses

the most informative samples for labelling, as shown in Figure 1, thus reducing labelling expenses while improving

model efficiency.
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Table 1. Summary of the MLP architecture for cool-roof classification.

Layer Output Shape Trainable Params

Input (PCA Features) (None, 30) –

Dense (Hidden 1) (None, 64) 30 × 64 + 64
Dense (Hidden 2) (None, 8) 64 × 8 + 8
Output (Sigmoid) (None, 1) 8 × 1 + 1

Fig. 1. Active Learning Workflow for Training a Model: The iterative process of selecting informative samples from an unlabeled pool,
annotating them, and retraining the model until performance meets the desired threshold.

In our framework as shown in figure 2, two complementary strategies are employed: Cross-Time Prediction Variance

(CTPV) and Adaptive Disparity Sampling (ADS), both designed to select high-impact samples for labelling.

CTPV aims to identify samples from time points where the model predictions are more stable. By considering the

variation in model predictions across multiple time points, CTPV helps prioritize those periods where the model exhibits

consistency, thereby ensuring temporal robustness.

ADS, on the other hand, focuses on selecting the best samples, where the model confidence is highest. This strategy

not only targets confident samples but also enforces diversity to prevent overfitting to highly similar instances, ensuring

the model learns from a broader range of data.

3.3.1 Cross-Time Prediction Variance (CTPV).
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Fig. 2. Acquisition Function Workflow for Model Training: CTPV selects the most informative samples across different time steps,
while ADS selects samples from the pool dataset. The model is then retrained until its performance meets the desired threshold.

Definition. Let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑛} be a collection of dates or time points on which Sentinel-2 imagery is available.

For each date 𝑑 ∈ 𝐷 , we form a feature vector 𝑥𝑑 ∈ R𝑚 . A trained model𝑀 (·) produces a prediction𝑀 (𝑥𝑑 ) in R𝑝 . We

define the Cross-Time Prediction Variance for date 𝑑 as:

CTPV(𝑑) =
1

|𝐷 | − 1
∑︁
𝑑 ′∈𝐷
𝑑 ′≠𝑑



𝑀 (𝑥𝑑 ) − 𝑀 (𝑥𝑑 ′ )



2
, (1)

where ∥v∥2 denotes the Euclidean norm in R𝑝 .

Acquisition Criterion. CTPV selects the date

𝑑∗ = argmin

𝑑∈𝐷
CTPV(𝑑), (2)

implicitly favouring time points whose predictions are the most consistent ( mean pairwise distance) relative to other

dates. In an active learning loop, this stability-driven criterion can reduce label redundancy and guide annotation to

temporally robust samples. Algorithm 1 outlines the procedure to calculate CTPV on all available dates and select the

one with the minimum score. The algorithm evaluates the model predictions 𝑀 (𝑥𝑑 ) for each date 𝑑 , and returns both

the selected date 𝑑∗ and its corresponding features 𝑥𝑑∗ .

3.3.2 Adaptive Disparity Sampling (ADS).

Definition. Let 𝑋
pool

= {𝑥1, 𝑥2, . . . , 𝑥𝑁 } be a collection of unlabelled samples, and let 𝑋train = {𝑥1, 𝑥2, . . . , 𝑥𝐿}
represent the labelled training set. Given a trained model𝑀 (·), the model produces a predicted probability 𝑝𝑖 = 𝑀 (𝑥𝑖 ) ∈
[0, 1] for each sample 𝑥𝑖 ∈ 𝑋pool. For each sample, we compute a disparity score 𝛿𝑖 to quantify the certainty of the

model’s prediction:

𝛿𝑖 = |𝑝𝑖 − 0.5|, (3)
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Algorithm 1 CTPV Acquisition Algorithm

Require: A trained model𝑀 , a set of dates 𝐷 , and feature vectors {𝑥𝑑 | 𝑑 ∈ 𝐷 }.
Ensure: (𝑑∗, 𝑥𝑑∗ , {CTPV(𝑑 ) | 𝑑 ∈ 𝐷 }) .
1: Initialize an empty dictionary predictions.

2: for each 𝑑 ∈ 𝐷 do
3: 𝑦̂𝑑 ← 𝑀 (𝑥𝑑 ) ⊲ Model prediction for date 𝑑

4: predictions[d]← 𝑦̂𝑑
5: end for
6: Initialize CTPVscores[𝑑 ] ← 0 for all 𝑑 ∈ 𝐷 .

7: for each 𝑑 ∈ 𝐷 do
8: for each 𝑑 ′ ∈ 𝐷 with 𝑑 ′ ≠ 𝑑 do
9: CTPVscores[𝑑 ] += ∥predictions[𝑑 ] − predictions[𝑑 ′ ] ∥2
10: end for
11: CTPVscores[𝑑 ] ← CTPVscores[𝑑 ]/( |𝐷 | − 1)
12: end for
13: 𝑑∗ ← argmin𝑑∈𝐷 CTPVscores[𝑑 ]
14: return (𝑑∗, 𝑥𝑑∗ , {CTPVscores[𝑑 ] : 𝑑 ∈ 𝐷 })

where a low 𝛿𝑖 indicates higher uncertainty and suggests that the sample lies closer to the decision boundary. However,

we observed that overconfident misclassifications were equally problematic as high-uncertainty predictions due to

confusing inputs.

Acquisition Criterion. To select the most informative samples, we prioritize those with high disparity scores, which

are the samples with low uncertainty. Let 𝐾 = min(5 · 𝑛, 𝑁 ) be the number of top samples to consider, where 𝑛 is the

number of instances to acquire. We select the top-𝐾 samples with the highest disparity scores:

argsort(𝜹) = (𝑖1, 𝑖2, . . . , 𝑖𝑛), such that 𝛿𝑖1 ≤ 𝛿𝑖2 ≤ · · · ≤ 𝛿𝑖𝑛
topDisparityIndices = {𝑖𝑛−𝐾+1, 𝑖𝑛−𝐾+2, . . . , 𝑖𝑛}

and then apply a diversity criterion to ensure that the selected samples are diverse concerning the labelled data. For

each candidate sample 𝑥𝑖 ∈ topDisparityIndices, we compute the minimum distance 𝑑 to the labeled data:

𝑑 = min

xℓ ∈𝑋train

distance(𝑥𝑖 , 𝑥ℓ ), (4)

and enforce a diversity threshold divThreshold (e.g., the 25th percentile of the disparity scores). Only samples with

a distance 𝑑 greater than the threshold are selected. If fewer than 𝑛 samples meet the diversity criterion, we fill the

remaining quota with the next most confident samples.

Algorithm 2 outlines the procedure to compute the disparity scores, select the most confident samples, enforce the

diversity criterion, and optionally fill in the remaining samples through a fallback mechanism.

3.4 Thermal Analysis of Cool Roofs

We conducted a thermal analysis using remote sensing data to validate the quality and correctness of the labels produced

through our annotation platform. Specifically, we aimed to verify whether the annotated cool roofs indeed exhibited

lower land surface temperatures, thus reinforcing the credibility of our data labelling pipeline.
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Algorithm 2 Adaptive Disparity Sampling

Require: Trained model𝑀 ( ·) ; Unlabeled pool X
pool
∈ R𝑁 ×𝑚

; Labeled training set Xtrain ∈ R𝐿×𝑚
; Number of instances to acquire,

𝑛.

Ensure: Indices of the 𝑛 selected samples from X
pool

.

1: Step 1: Compute Disparity Scores
2: Evaluate𝑀 (X

pool
) to obtain predicted probabilities p ∈ R𝑁

3: for 𝑖 = 1 to 𝑁 do
4: 𝛿𝑖 ← | 𝑝𝑖 − 0.5 |
5: end for

6: Step 2: Select High-Disparity Candidates
7: 𝐾 ← min{5 · 𝑛, 𝑁 }
8: topDisparityIndices← argsort(𝜹 ) [−𝐾 :] ⊲ Indices of top-𝐾 disparity scores

9: Step 3: Enforce Diversity
10: divThreshold← percentile(𝜹, 25)
11: selected← {}
12: for 𝑖 in topDisparityIndices (descending order of 𝛿𝑖 ) do
13: x𝑖 ← X

pool
[𝑖 ]

14: 𝑑 ← minxℓ ∈Xtrain
distance(x𝑖 , xℓ )

15: if 𝑑 > divThreshold then
16: selected← selected ∪ {𝑖 }
17: end if
18: if |selected | ≥ 𝑛 then
19: break
20: end if
21: end for

22: Step 4: Fallback (If Needed)
23: if |selected | < 𝑛 then
24: remainingNeeded← 𝑛 − |selected |
25: fallback← topDisparityIndices \ selected
26: fallback← fallback[0 : remainingNeeded]
27: selected← selected ∪ fallback
28: end if
29: return selected

We used the USGS Earth Explorer to acquire the Landsat 8-9 OLI/TIRS Collection 2 Level 2 dataset [25] for measuring

Land Surface Temperature (LST ) at the city scale. This dataset was processed to extract LST values to evaluate the

thermal performance of annotated cool roofs in comparison to non-cool roofs.

To assess seasonal performance differences and validate spatial labels, our analysis included:

• Identifying the predicted locations of cool roofs across the city and extracting their corresponding LST values in

degrees Celsius.

• Analyzed seasonal variations in LST for both cool and non-cool roofs across all months, supported by the

Mann-Whitney U Test to assess the statistical significance of temperature differences.

• Comparing the LST of cool roofs with their neighbouring buildings within a 100-meter radius to understand

localized microclimatic cooling effects.

The thermal effect assessment, based on comparisons of mean LST values between cool and non-cool roofs, revealed
a consistent reduction in surface temperatures for the annotated cool roofs, particularly during summer months. These
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findings confirm that the cool roof labels generated by our annotation tool are thermally meaningful and correspond to

real-world cooling benefits.

3.5 Satellite Data Annotation Tool

To facilitate efficient and accurate labelling of satellite imagery, we develop an interactive annotation dashboard
designed to streamline the manual labelling process. The dashboard integrates Google Maps imagery with Sentinel-2

satellite images of the target area, using latitude and longitude to guide human annotators. Annotators visually assess

these image pairs to verify whether the identified buildings contain cool roofs.

Fig. 3. The annotation dashboard interface displaying Google Maps[9] and Sentinel-2 RGB Bands imagery [8] with roof squares
bounding box to polygon mapping for guided labelling.

The annotation workflow follows an active learning approach to optimize labelling efficiency. Initially, a small

manually labeled data set is used to train a baseline model. The model then generates predictions for a larger, unlabeled

dataset. To further refine the data set, an acquisition function classifies samples based on their informativeness or

confidence, prioritizing them for manual review. This iterative process significantly reduces the annotation effort while

maintaining high accuracy.

The dashboard provides several key functionalities:

• Interactive satellite image visualization: Enables precise manual annotation of roofs using intuitive selection

tools.

• Support for multiple annotation formats: Ensures compatibility with standard machine learning workflows

for downstream tasks.

• Adaptability for broader remote sensing applications: Allows for easy modification of scripts and configu-

rations to accommodate different annotation tasks.

By integrating these features, our annotation tool improves the efficiency of dataset creation, supporting high-quality

training data generation for machine learning applications in remote sensing.

4 Experimental Setup and Evaluation Metrics

We conducted experiments to assess the effectiveness of the CTPV acquisition function compared to random sampling

using a cool roof dataset from Chandigarh City. Additionally, we evaluated the performance of our ADS acquisition

function in comparison with various acquisition functions documented in the literature. The evaluation metric used
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across all experiments was test accuracy, measured on a held-out validation set. This allowed us to quantify the impact

of each acquisition function in selecting informative samples and improving model generalization in the context of cool

roof classification.

4.1 Datasets

Using our satellite data annotation tool, we have labelled the cool roofs dataset of buildings located in the city of

Chandigarh. This dataset includes 457 cool roofs and 451 non-cool roofs. Statistically, our data sets are evenly distributed,

as depicted in Fig. 4. We used Sentinel-2 data from three distinct dates: 4 June, 9 June and 16 June, incorporating eight

bands for pre-processing and feature extraction.

Fig. 4. Spatial distribution of 457 annotated cool roofs and 451 non-cool roofs in Chandigarh city. Blue markers represent cool roofs,
while red markers represent non-cool roofs.

Manuscript submitted to ACM



Geospatial Active Learning for Efficient Data Annotation: A case study on cool roof detection 13

4.2 Training Procedure and Hyperparameters

The experiments employ an MLP as described in Section 3.2, implemented using PyTorch 2.3.1[21]. Initially, 98 samples

are randomly selected to train the initial model and 112 samples are used as a fixed test set. Each active learning

iteration, as discussed in Sections 4.3 and 4.4, begins with retraining the model on newly labelled samples while keeping

the hyperparameters unchanged. We incorporate 20 samples per iteration into the active learning cycle, ensuring a

balanced class distribution. The Adam Optimizer with an initial learning rate of 10
−3

is used for optimization and

training is limited to 30 epochs for each iteration. All experiments were carried out using an NVIDIA RTX A5000 GPU

on a server.

4.3 Comparison of CTPV Acquisition Function Performance

We conducted a comparative study to assess the effectiveness of the proposed CTPV acquisition function against a

baseline random sampling method. The main objective was to determine if CTPV could select more informative samples

by utilizing temporal prediction variance, thus enhancing the model’s test accuracy with fewer labelled examples.

The experiment was structured to emulate a pool-based active learning environment. In each iteration, the acquisition

function chose a subset of samples from the unlabelled pool to be labelled. These newly labelled samples were later

used to update the model incrementally. The comparison included the following acquisition functions:

• CTPV (proposed): Utilizes temporal prediction variance to select the most informative samples.

• Baseline (random sampling): Selects samples randomly without considering the uncertainty or informativeness

of the model.

We evaluate the effectiveness of the acquisition functions by measuring test accuracy over several iterations. The

results of this experiment are discussed in the Results section 5, where we demonstrate the effectiveness of CTPV in

outperforming the baseline and other acquisition strategies.

Fig. 5. Performance comparison of the CTPV acquisition function and the baseline random sampling strategy based on test accuracy.
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4.4 Comparison of ADS Acquisition Function Performance

In addition to CTPV, we introduce a new active learning acquisition strategy called Adaptive Disparity Sampling (ADS).

The effectiveness of ADS was tested against a range of established baseline strategies, such as Entropy Acquisition,

Random Sampling, Least Confidence, Margin Sampling, and BALD (Bayesian Active Learning by Disagreement).

The ADS approach utilizes differences in predictions across multiple samples from the pool data to identify highly

informative data points. By focusing on input space areas with significant uncertainty or lacking representation, ADS

seeks to enhance model generalization while reducing the number of labelled samples needed.

We evaluate the effectiveness of the acquisition functions by measuring test accuracy over several iterations. To

ensure consistency, the experiments were repeated using different random seeds to address variability. The average

performance of these iterations was documented and standard deviations were calculated to signify the robustness of

each method. Findings are detailed in the Results section 5, underscoring the benefits of ADS in achieving higher test

accuracy with fewer labelled samples than standard methods.

4.5 Summary of the Workflow

The suggested workflow utilizes a structured strategy to assess active learning acquisition functions for efficient sample

selection in machine learning tasks. This approach seeks to minimize labelling efforts while sustaining or improving

model performance, especially in tasks dealing with temporal and spectral data.

(1) Data Acquisition and Preprocessing: Collect Sentinel-2 satellite imagery and extract building footprints

across multiple temporal instances. Pre-process data to ensure consistency and accuracy.

(2) Feature Engineering: Extract raw spectral bands and derive additional characteristics relevant to urban thermal

analysis and reflective roof classification.

(3) Dimensionality Reduction: Utilize Principal Component Analysis (PCA) to reduce the dimensionality of

spectral and spatial features, retaining the most informative components.

(4) MLP Model Training and Validation: Train and validate a Multi-Layer Perceptron (MLP) model on labelled

data to classify cool and non-cool roofs. The model was initially trained on 98 labelled samples and evaluated on

a fixed test set of 112 samples.

(5) Active Learning Workflow: Implement an iterative active learning loop where the most informative unlabelled

roof samples are selected using acquisition functions. In each iteration, 20 samples are selected from the pool

dataset and used to retrain the model. This process aims to minimize labelling costs while maintaining high

model performance.

5 Results and Discussion

This section examines and interprets the outcomes of our proposed methodology when applied to the Chandigarh cool

roof data set. We examine how well the multilayer perceptron classifier (MLP) identifies cool roofs, assess the efficiency

of the active learning framework in minimizing annotation workload while preserving high classification accuracy, and

offer an in-depth evaluation of land surface temperature (LST) measurements. Lastly, we present a broader discussion

of our findings, highlighting significant insights and possible limitations.
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Fig. 6. Test accuracy performance of the proposed Adaptive Disparity Acquisition Sampling (ADS) strategy compared to baseline
strategies, including Cross-Time Prediction Variance (CTPV), over multiple active learning iterations. Each iteration adds 20 samples
from the pool dataset. Error bars indicate the standard deviation of accuracy across five independent runs. While performance
differences are subtle at higher sample counts, the proposed ADS approach shows greater improvements at lower sample sizes,
demonstrating its utility in low-data regimes.

5.1 Cool Roof Classification Performance

The classification performance of our MLP model in Chandigarh demonstrates strong results. The model achieved an

accuracy of 97.02%, for distinguishing between cool and noncool roofs. This indicates a high level of reliability in the

model’s predictions,

5.2 Active Learning Efficacy

5.2.1 Reduction in Annotation Effort. Figure 6 presents the learning curves comparing the conventional labelling ap-

proach (random sampling) and other acquisition functions versus our active learning (AL) strategy. Notable observations

include:

• Steeper Performance Gain: Active Learning (AL) methods such as ADS achieved over 96% test accuracy

with just 210 labelled samples, whereas random sampling failed to reach 96% accuracy even after annotating

300 samples. This highlights the efficiency of AL strategies in reducing the overall annotation workload while

achieving higher model performance.

• Faster Convergence: The model trained with AL converged to high precision within fewer iterations, indicating

an efficient selection of ambiguous or diverse samples.

We explored both confidence-based and diversity-based acquisition functions. Adaptive disparity dynamically

monitoring changes in confidence scores, this strategy prioritized samples in which the model exhibited fluctuating

confidence between training epochs. The approach further reduced redundancy in labelled examples.

The confidence intervals in Figure 6 are computed based on standard deviations derived from five independent

experimental runs with the same train-test split to maintain consistency. Specifically, each acquisition strategy (e.g.,
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Table 2. Comparison of different active learning acquisition strategies based on test performance metrics of final iteration. The
reported mean and standard deviation values are calculated over five independent runs. While differences are small across methods,
the proposed ADS approach consistently achieves the highest mean accuracy.

Method Mean Test Accuracy Std Test Accuracy Mean Test Loss Std Test Loss

Margin Sampling 0.9494 0.0042 0.1557 0.0165

Adaptive Disparity Sampling 0.9702 0.0042 0.1381 0.0147

BALD 0.9524 0.0084 0.1522 0.0150

Entropy Acquisition 0.9643 0.0073 0.1348 0.0142

Least Confidence 0.9673 0.0042 0.1455 0.0176

Random Acquisition 0.9524 0.0084 0.1596 0.0201

ADS, CTPV) is evaluated across five independent runs. The standard deviations reported in Table 2 are calculated using

this same procedure to ensure robustness and reliability.

Our method outperformed baseline random sampling, indicating that an informed sample selection strategy sub-

stantially reduces annotation costs without sacrificing accuracy. Although we acknowledge that differences between

active learning methods are marginal at higher iteration numbers. However, improvements are more significant during

early-stage training, where fewer samples are available. This observation is particularly relevant for urban policy

applications where reducing annotation costs while maintaining accuracy is critical.

Using this method, we analyzed 213,000 buildings and identified 4,315 cool roofs. We then validated 457 cool roofs

using our dashboard to examine their Land Surface Temperature (LST) characteristics and assess the real-world thermal

effect of these classified cool roofs. The subsequent subsection quantifies the thermal performance comparison between

these detected cool roofs and non-cool roofs.

5.3 Real-World Thermal Effect of Cool Roofs

The results highlight the importance of cool roof technologies as an effective sustainable approach to improving urban

thermal comfort and increasing energy efficiency, especially in areas experiencing high summer temperatures. Future

research may aim to include more detailed spatial data, extend the duration of datasets, and consider socioeconomic

elements to more accurately assess the wide-ranging effects of implementing cool roofs in urban settings.

5.3.1 Land Surface Temperature Differences. Using the thermal band, we computed LST maps for both cool and non-cool

rooftops. Figure 7 presents a histogram of the LST values at the building level in Chandigarh.

• Overall Temperature Reduction: During the summer months, cool roofs exhibited a lower Land Surface

Temperature (LST) by up to 2
◦
C compared to their non-cool counterparts during peak daytime heating.

To ensure the robustness of our temperature comparison, we performed a Mann-Whitney U test for each month

of the year. The results are presented in Table 4. Statistically significant differences were observed between cool and

non-cool roofs for most months (p-value < 0.05). Exceptions include August and November, where the differences were

not statistically significant, likely due to monsoon cloud cover or seasonal effects. This analysis confirms that cool roofs

generally exhibit lower temperatures compared to their non-cool counterparts throughout the year.

These results support previous research indicating that reflective roof technologies can substantially reduce daytime

surface temperatures in cities[15]. Nevertheless, the precise extent of these cooling effects is influenced by local

morphological elements like the density of buildings, nearby vegetation, and the city’s structural layout.
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Table 3. Visualization of geographically distributed sample selection, the uncertainty map, and the iterative selection process using
the Adaptive Disparity Acquisition Sampling (ADS) approach. Each subfigure represents a distinct uncertainty map at different
iterations, showcasing the progressive refinement of model performance.

Observation Period U-Statistic P-Value Statistically Significant
January 2024 117659.0 0.00021878 Yes

February 2024 90325.0 0.00127635 Yes

March 2024 91038.0 0.00235955 Yes

April 2024 94712.5 0.03478603 Yes

May 2024 91637.0 0.00386227 Yes

June 2024 93089.5 0.01168246 Yes

July 2024 88060.5 0.00014803 Yes

August 2024 104562.5 0.70262783 No

September 2024 83874.0 1.21e-06 Yes

October 2024 94580.0 0.03200287 Yes

November 2024 97708.5 0.17618136 No

December 2024 111666.0 0.02929046 Yes

Table 4. Mann-Whitney U Test results for the statistical significance of land surface temperature differences between cool roofs and
their non-cool roof neighbours. Significant differences (p-value < 0.05) are observed for most months, except during the monsoon
period (August) and the transition month of November.

5.3.2 Land Surface Temperature Differences Between Cool Roofs and Neighbouring Buildings. This study examines the

effect of cool roofs on land surface temperature (LST) by comparing the temperatures of buildings with cool roofs with

Manuscript submitted to ACM



18 Yogendra et al.

Fig. 7. Monthly Land Surface Temperature (LST) analysis in Chandigarh showcasing seasonal temperature variations between cool
and non-cool roofs. The plot highlights differences across all months, emphasizing the effectiveness of cool roofs in reducing LST,
particularly during the hotter months of April, May, and June.

those of their neighbouring structures within a 100-meter radius. The analysis demonstrates that cool roof buildings

exhibit significantly lower surface temperatures than their immediate surroundings.

Figure 8a illustrates the distribution of the average number of cool and non-cool roofs within varying radii from a

target cool roof. We observe that a radius of 100m provides a suitable compromise between sample size and minimizing

variance from unrelated temperature influences, such as vegetation or water bodies.

Figure 8b presents a histogram that illustrates the distribution of temperature differences between the cool-roof

buildings and their neighbouring structures. The right-skewed distribution, with most data points showing a positive

temperature difference. This trend suggests that cool-roof buildings generally maintain lower surface temperatures

than their surroundings.

However, in some cases, an inverse pattern is observed, as depicted in Figure 8b. This deviation occurs primarily due

to the presence of dense vegetation around certain roofs or a high concentration of cool roofs within the 100-meter

radius. Figure 9 visually highlights these conditions, demonstrating that external environmental factors can sometimes

mitigate the cooling advantage of individual cool roofs.

In summary, our model consistently achieves more than 97% accuracy in distinguishing cool versus non-cool roofs,

while our active learning framework significantly reduces the annotation cost. These findings underscore the potential

of reflective roofing to reduce urban heat, with observed average LST reductions of 2–3
◦
C in Chandigarh. Future

expansions will explore higher-resolution thermal data and additional climate regions to further validate and refine our

methodology.
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(a) Comparison of the average number of cool and non-cool roofs
among neighbors across different radii (50m, 100m, 200m).

(b) Histogram of average LST differences between cool roof build-
ings and their neighbors within a 100-meter radius.

Fig. 8. Neighborhood-level analysis of cool roofs: (a) The plot highlights the count of cool roofs in proximity and the effectiveness of a
100m radius in providing meaningful thermal contrast. and (b) temperature differences highlighting localized cooling effects. The
right-skewed distribution indicates that cool roofs generally maintain lower temperatures compared to their surroundings.

6 Conclusion and Future Work

In this study, we have investigated the cooling effects of reflective cool roofs, which present a promising and cost-

effective solution to mitigate the Urban Heat Island (UHI) effect, especially in rapidly growing cities like those in

India. We developed a hybrid approach that leverages remote sensing data along with machine learning techniques,

particularly a Multilayer Perceptron (MLP) classifier, to identify cool roofs across large urban landscapes. Our approach

also integrates active learning (AL), which not only improves classification performance but also reduces the time and

effort involved in annotating large satellite datasets.

One of the key contributions of this work is the introduction of two novel active learning acquisition functions:

Cross Time Prediction Variance (CTPV) and Adaptive Disparity Acquisition Sampling (ADS). These strategies
have proven to be highly effective in selecting the most informative samples for annotation, which ultimately leads to a

more accurate model with fewer labelled data points. Our results demonstrate that both CTPV and ADS outperform a

range of state-of-the-art active learning showing significant gains in both classification accuracy and data efficiency.

Our thermal analysis, based on Landsat-8 thermal data, further supports the benefits of cool roofs and the efficiency

of our pipeline. We observed a significant reduction in Land Surface Temperature (LST), particularly in the summer

months, highlighting their effectiveness in providing thermal relief during peak urban heat stress conditions. This

finding underscores the importance of cool roofs in improving urban thermal comfort and contributing to energy

savings, particularly in tropical regions such as India.
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Fig. 9. Illustration of an area where the expected cooling effect of cool roofs is not observed due to surrounding vegetation and a high
density of cool roofs within the 100-meter radius.

The study also introduced a lightweight, user-friendly annotation tool to accelerate satellite image labelling, enabling

scalable cool roof detection across cities. This tool bridges the gap between manual labelling and automated pipelines,

facilitating the rapid deployment of annotated datasets in other geospatial research contexts.

Our findings underscore the dual value of cool roofs: first, as a proven passive technique to lower urban surface

temperatures, and second, as a use case for scalable, efficient annotation frameworks in satellite image analysis. Active

learning, in particular, emerges as a powerful enabler, allowing rapid model adaptation with minimal manual effort. In

particular, we demonstrate Geo AI methods such as CTPV and ADS for the binary classification task of cool building

detection and validate our methodology through LST-based thermal verification.

While our results are promising, several limitations warrant future investigation. The current analysis is based on

imagery from a limited temporal window, which does not account for seasonal or diurnal variability in the classification

of roofs. Extending the temporal span of observations will allow a more comprehensive understanding of the year-round

cool roofs. Similarly, the 100-meter resolution of Landsat-8 LST data imposes spatial constraints, particularly for densely

built areas where a single building may occupy only a fraction of a pixel. Future work should consider higher-resolution

sources or UAV-based thermal imaging to improve precision.

Although active learning reduces the need for large labelled datasets, a minimal level of expert oversight remains

essential. Exploring semi-automated or crowdsourced annotation methods may further streamline this process and
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enable rapid dataset expansion. Incorporating metrics like precision, recall, and F1-score in future evaluations will offer

a more complete view of model performance, especially in low-data or generalization settings.

Several future directions are worth pursuing. Our current implementation of CTPV selects a single observation

per building from a limited number of temporal snapshots. Expanding this to include more dates and diverse weather

conditions may improve both model robustness and annotation reliability. Furthermore, integrating LST data with

urban features such as building density, vegetation cover, and wind dynamics could offer a more holistic view of urban

heat behaviour. Another promising extension is to investigate the influence zones of cool roofs by aggregating across

multiple neighborhoods. Analyzing larger contiguous clusters of cool roofs could provide insights into their broader

collective cooling effects on urban microclimates, particularly in dense urban settings. Adding socioeconomic layers to

our analysis may also help identify priority regions for cool roof interventions, especially in underserved and vulnerable

communities. In addition, investigating the combined effect of cool roofs with other urban heat mitigation strategies

(e.g., green roofs, reflective pavements, and urban forestry) can inform the design of integrated climate resilience plans.

Lastly, there is significant scope for policy engagement. Evaluating the role of incentives and government programs in

scaling cool roof adoption will be crucial, particularly in regions where urban climate resilience is both urgent and

underfunded.

In conclusion, this work advances the state of the art in remote sensing and machine learning for climate adaptation.

It provides practical tools and scalable frameworks for identifying cool roofs efficiently, thus contributing to sustainable

urban planning in the context of rising global temperatures and expanding urban footprints.
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