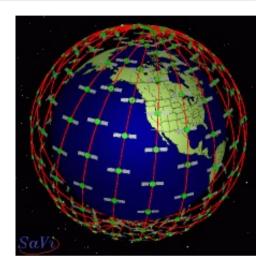


DIFFERENT PATHS – DIFFERENT CAPABILITIES

- Geostationary (GEO)
- Medium Earth Orbit (MEO)
- Low Earth Orbit (LEO)
- Specialized orbits
 - Sun synchronous
 - Highly elliptical

GEO

- 36k km orbit
 - Constantly over one longitude
 - Travel about 3 km/s to maintain orbit
 - Low resolution/signal strength due to large distances
- High FOV
 - 3 GEO satellites cover entire earth
 - Can't monitor around polar regions
 - Operation has to be around equatorial plane
- Ideal for continuous monitoring
 - Weather
 - War

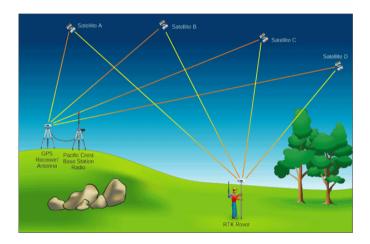


GEO APPLICATIONS

- Meteorological satellites
 - Satellites to track hurricanes, thunderstorms, wildfires
 - Full image (3000x3000 km) in 41 seconds stored to disk every 5-15 mins
 - Further sped up in rapid scan mode during extreme events
- Communications
 - Television, satellite radio, internet
 - Solar flares, space weather monitoring

LE0

- 180 km (just above atmosphere) to 2000 km
- Most satellites 800 km altitude
 - Starlink 540-550 km
 - 15-16 orbits a day (at 7.8 km/s)
 - High spatial resolution and link speed
 - Constellations required for global coverage
 - Sun-synchronous orbits same time every day
 - Great for monitoring urban growth, seasonal vegetation, ice cover

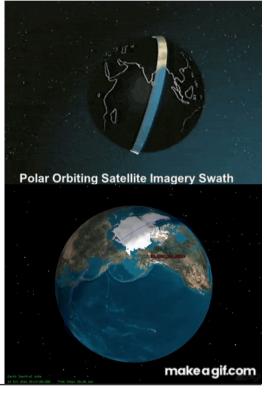


LEO APPLICATIONS

- Majority of scientific earth observation
 - Terra/Aqua (weather and climate)
 - Sentinel
 - Imaging fleets (Maxar, Planet, Pixxel)
 - Landsat (sun synchronous) why?
- Most common usage deforestation trends (caused 80% drop in Brazil in 2000s with satellite based monitoring and enforcement)
- Disaster response
 - Earthquakes, Tsunamis, Floods

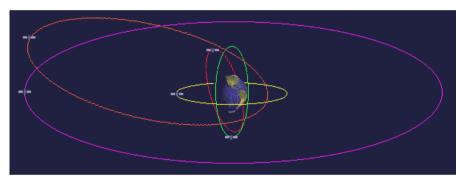
ME0

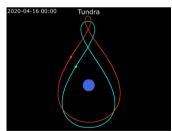
- 2000 km to 35786 km orbit. Typically around 20000 km.
- Navigation satellites GPS, GLONASS, Galileo
 - \sim 2 orbits a day
 - ~9000 km radius on earth
 - Covers entire earth in 24-32 satellites



MEO APPLICATIONS

- Positioning services
- Atomic clocks and broadcast L-band radio
- COSMIC mission to observation temp/humidity through light grazing effect between satellites
- Surface winds and roughness through reflections off the ocean


POLAR AND SUN-SYNCHRONOUS ORBITS


- Global coverage through slice by slice monitoring
 - NASA's Terra/Aqua/EU METSAT are in polar orbits
- Local solar time of the overhead pass is the same everyday
 - Consistent lighting
 - Uniform shadows
 - Change detection applications
 - Weather monitoring and damage assessments
- Examples: Sentinel 2, Landsat
- Limitations
 - Real-time sensing (done through GEO)

HIGHLY ELLIPTICAL ORBITS

- Satellites and radio in high latitudes
- Continuous arctic weather observations
- Fills the niche for prolonged coverage of high-latitude regions

SUMMARY

1248	12	18	26	40
LSC	X Ku	К		Ka
Lower	(Throughput)			Higher D
Larger	(Antenna Size)			Smaller
Narrow	(Spectrum Band)			Larger
Less	(Susceptibility to rain fading)			More

L-BAND

- 'L'ongest wavelength used in WW-II
- Penetrates through vegetation and water
- Most used for GPS/GNSS navigation signals and satellite mobile comms (high reliability comms)
- Earth observation
 - SAR for forestry, biomass and soil moisture sensing
 - Measures soil moisture and ocean salinity (SMAP mission)

S-BAND

- ISS (International Space Station) communications
- Correct ionosphere delay in radar altimeters (altitude measurement)

C-BAND

- The compromise band
- TV/International communication links
- Less attenuated than Ku band
- Sentinel 1C, Canada's RADARSAT
 - Penetrates through cloud and moderate vegetation
 - Disaster mapping, sea ice monitoring, agriculture

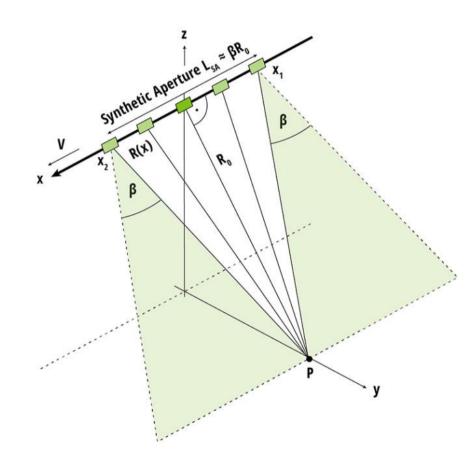
X-BAND

- The secret band
- Used heavily by military and government
- High resolution SAR band
 - Urban mapping, tactical military reconnaissance
 - No penetration of foliage or soil

KU-BAND

- K-under band
- Avoids the water vapor absorption line at 22 GHz
- Used for satellite TV broadcasting and broadband (DISH TV)
 - Rain attenuation
- Scatterometers measure ocean winds
 - Sensitivity to capillary waves on ocean surface caused through wind

K/KA-BAND


- K Kurz (short) microwaves
- Increasingly important for high speed satellite communication
 - HD video/high speed internet
 - Highly susceptible to rain fade
 - Cloud penetration and altimetry (sea surface height)
 - Would be the one enabling high resolution high data rate sensors

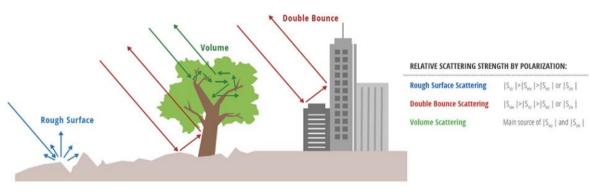
THE TRADEOFF

- Spatial resolution
- Penetration
- X, Ku finer resolution, very affected with rain/foliage
- L low resolution, high penetration through forest canopies or dry soil

SYNTHETIC APERTURE RADAR

- Antenna Size simulated through motion of satellite
- Constructive/destructive interference for beam steering

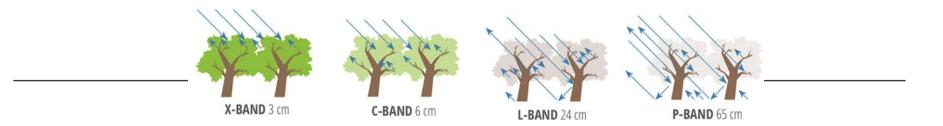
Source:


https://www.earthdata.nasa.gov/le arn/earth-observation-databasics/sar

POLARISATION

• V – Vertical, H – horizontal

- Rough surfaces VV scattering (polarization doesn't change)
- Volume scattering gets reflected multiple times
 - leaves and branches of forest canopy (cross-polarized data like VH/HV)
- Double bounce scattering HH
 - Buildings, tree trunks or inundated vegetation



SOME EXAMPLE APPLICATIONS

WITH L-BAND

FORESTRY

- L-band backscatter shown to correlate with forest structural parameters, e.g., forest height and above-ground biomass
 - JAXA's global forest/non-forest maps
 - Global Mangrove watch
 - Advanced models are required for very dense canopies
- L-band combined with LiDAR/optical data is showing promise for improved forest parameter estimation

AGRICULTURE AND SOIL MOISTURE (L-BAND)

- Surface moisture with moderate vegetation
 - SMOS (Soil Moisture and Ocean Salinity)
 - SMAP (Soil Moisture Active passive)
- Can sense sub-surface moisture
 - Drought, irrigation measurements
 - Crop structure

DISASTER MANAGEMENT

- Inundation under foliage
 - Ground deformation after earthquakes
 - Movement of Amazon forest floodplain
 - earthquake uplift in forested Papua New Guinea

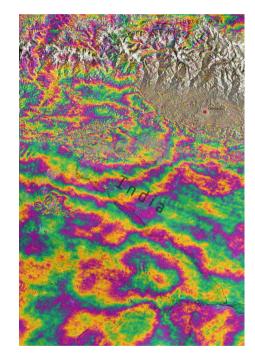
URBAN INFRASTRUCTURE

- Interferometric SAR can monitor ground subsidence
 - Cities built on soft soil (e.g., Jakarta and Mexico sinking)
- C and X band are generally preferred for urban detail while L-band provides a stable long-term signal (sun-synchronous polar orbit)

WITH C-BAND

C se Compromise

AGRICULTURAL MONITORING


- "workhorse" for agricultural monitoring
 - Crop classification and growth monitoring
 - Unique backscatter during different phases of growth, e.g., paddy
 - Leaf area index and fractional vegetation cover

FORESTRY AND LAND COVER

- Strong volume scattering from dense forests
 - Good effectiveness in forest clearing alert
 - Logging activities
- Sensitive to freeze and thaw cycling
- Indicating forest phenology, e.g., leaf-on vs leaf-off conditions
- Change detection and mapping

DISASTER MANAGEMENT

- Flood mapping (good water/land distinguishability)
 - Copernicus emergency management service (EMS)
- Even cm of motion can be detected as fringes in the image
- For example, in 2015 Nepal Earthquake, bulls eye pattern fringes were seen indicating some uplifted and some subsided area over 120x100 km

URBAN INFRASTRUCTURE

- Still can't detect individual buildings
- Successful applications
 - Classifying land use
 - Subsidence or Uplift of built structures (mm precision)
 - Regional urban deformation surveys
- Examples:
 - Naples ground study to determine risks from underwater acquifer changes
 - Jingjin high-speed railway track assessment
 - Highway, Rail corridor, Bridges Structural integrity

TRANSPORT APPLICATIONS

- Maritime surveillance
 - Metal hull reflections
 - For example, Illegal maritime activity detection
- Mapping flood damage to roads and bridges post disaster

X-BAND

The secret sauce

REMINDER

- High spatial resolution
 - 1-3 m resolution
- Easily attenuated by rain
- Low penetration into ground/foliage
- Primarily senses the top of the surface

- Early application
 - Fire control and targeting (hence the X)

URBAN PLANNING AND INFRA

- Can detect smaller structures individual buildings, bridges, vehicles
- A variant called Tomographic SAR could even separate scattering from different floors of buildings and reconstruct building façades in 3D
- InSAR: infrastructure stability
 - Bridges, dams, roads, railways, and buildings
 - Thermal expansion/contraction

- Beijing's Tongzhou district:
 - 8 TerraSAR-X images from 2012–2013 were used to detect where new buildings were constructed or old ones demolished, via a temporal change detection algorithm.

Wang, Shihong, Jiayi Guo, Yueting Zhang, Yuxin Hu, Chibiao Ding, and Yirong Wu. "TomoSAR 3D reconstruction for buildings using very few tracks of observation: A conditional generative adversarial network approach." *Remote Sensing* 13, no. 24 (2021): 5055.

FORESTRY

AGRICULTURE

- Provides complementary fine-level detail to low-resolution data
 - It can reach the ground

- Specialty crops, e.g.,
 - Detecting grain heads

DISASTER MANAGEMENT

- Building collapse detection
- Forecasting landslides through detection of minute changes
- Military detailed terrain maps

TRANSPORT

- Characterize a ship and its features
 - Ship's wake, bow and stern shapes
 - Velocity estimation
 - 95% AP+ in ship detection

KU-BAND

WEATHER RADAR

- Ocean observations/Scatterometry
 - Meterological radars and altimeters
 - Raindrops and ocean waves (2 cm wavelength)
 - QuickSCAT satellite for ocean measurements since 1999
 - India OceanSAT
- Precipitation radar
 - 3D rain profiling (even within clouds)
 - To be corrected for signal transmission losses

- Image SAR and Altimetry
 - Sea level measurements