Geospatial Data Science

Course Summary

Course Components

- Data and Compute
 - Types of data
 - Raster, Vector and Surfaces
 - CRS, Inter-data conversion through sampling and aggregation
 - Which algorithms to run?
 - Indices social, physical, etc.
 - Spatial weights rook, queen, knn..
 - Spatial statistics Moran's I, LISA, Point process models, Ripleys' G, F, etc.
 - Spatial ML clustering, regionalization, regression, etc.
 - Spatio-temporal statistics
 - Systemic models
 - Agent based models
 - Process models
 - Hybrid models
 - How to implement/scale
 - EE, Python
 - Which libraries to use?
 - PostGIS

- Satellites and sensors
 - Where are the satellites?
 - Geostationary, MEO, LEO
 - How frequently can they sense and with what bandwidth can they communicate?
 - What sensors do they carry?
 - Multispectral, Hyperspectral, Radar
 - What properties of the earth can the sensors sense?
 - Crops, Forests, Water, Buildings, Heat
 - But now more than ever, objects, structures, time series patterns

- Domains that care
 - Community building and decision making (**Aadi**)
 - Climate (Li)
 - Environment
 - Urban Planning (Li)
 - Agriculture (**Praveen**)
 - Waste Management
 - House Pricing
 - Uberization (transport of humans, food, equipment, etc.)
 - Building efficiency (Vishal)
 - New age tools GIS (Michael)
 - Of course many more..

Your eval components

- Exams (50)
 - Can you think geospatially? Find the right formats, algorithms and implementation choices
- Case studies (10)
 - Identify some interesting areas of application of satellite imagery?
- Project (30)
 - Build something interesting by understanding nuances of a domain
 - where data and images become the backdrop and the story takes center stage
- Attendance (10)
 - Thanks for coming!