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Fig. 1. We’ve developed a satellite image based tracker for identifying building-level roof reflectance information using machine
learning. A cool roof tracker provides an eagle eye view to a city administrator on the progress of cool roof implementation in the city.
The available information at the building level could also be utilized for regulatory and compliance purposes. This tracking also lays
the foundation for real-time urban heat island monitoring in the city.

With rapid pace of urbanization, the increase in built up area is leading to urban heat islands which absorb a lot of the heat received
through solar radiation. To reduce this effect, reflective coatings on top of building roofs, known as cool roofs are installed. Cool roofs
reflect light back through the atmosphere to minimize the heat radiation within the urban space. In this paper, we introduce a cool
roof tracker. The tracker provides building level information of whether a roof is cool or not, thus indicating if an urban heat island is
likely to develop in a region. This information helps policymakers identify the vulnerable regions in a city and track the progress of
cool roof implementation in all areas.

There are three key components of the system: building polygon extraction, reflectance features extraction from roof images; and
classification into cool vs non cool buildings. There are a number of satellites operational today which offer different strengths - high
resolution, high revisit time, multiple spectral bands, etc. In this work, we do a mix of quantitative and qualitative evaluation of the
efficacy of different satellite modalities for each of the system components, build robust models with extensive experimentation on
color space, augmentations, and generalization achieving an F1-score of 97% on our test set. We also develop a prototype dashboard as
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a demonstration for supporting data-driven decision making for state level heat mitigation plans as well as regulatory and compliance
tool for measuring roof reflectance.
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1 INTRODUCTION

Climate change is raising temperatures globally. March 2022 was the hottest month recorded in India in the past 122
years [15]. In this period, twelve people died from heatstroke at an outdoor event in Mumbai. Scientists from ten
different countries found that climate change [7] made it 30 times more likely for India to experience the April heatwave
this year. The default behavior to mitigate urban heat is the use of additional cooling equipment (and thus, electricity) in
the city leading to even more heat being emitted in the environment causing an urban heat island effect. This increases
the vulnerability of the urban poor and poses an undue demand on the electric grid. To prevent this catastrophic
situation, there must be passive solutions to tackle heat accumulating in urban areas. While planting trees, preserving
water bodies are important steps; even when we build concrete structures, cool roofs are a way to reflect the heat back
into the atmosphere [37]. A cool roof is a reflective coating/material on the roof designed to reflect heat carried by the
sunlight back through the atmosphere.

The sun emits energy across a wide range of wavelengths. Most of this energy falls between 300 nanometers (nm)
and 2500 nm. Within this range, about 5% is in the ultraviolet (UV) range (300-400 nm), about 43% is in the visible range
(400-700 nm), and about 52% is in the near-infrared (NIR) part (700-2500 nm). When sunlight hits a roof, some of it
bounces off or scatters, giving the roof its color and gloss. The rest is absorbed by the roof. This absorbed energy heats
the roof which then further radiates into the atmosphere. The roof spreads heat through convection - with air in the
atmosphere, conduction - through the layers within the roof such as insulation, and, radiation - through the release
of electromagnetic waves, which can heat anything solid that absorbs them, including nearby air or objects. A cool
roof is designed to reflect more sunlight and absorb less heat compared to regular roofs. This is through specialized
materials with higher reflectivity and less absorbption in the infrared spectrum. This can save energy by keeping indoor
temperatures lower, and hence reduce the need for air conditioning. Cool roofs have proven to be [22] an effective
mechanism even for rural communities for economically building resilience to heat. In summary, cool roofs are high in
both reflectivity and thermal emissivity. Therefore, it’s a cost-effective green technology, especially effective for places
with high temperatures.

Indian government as well as non-governmental organizations are actively working towards validation and adoption
of cool roof solutions. A study from 2011 [8] shows that installing cool roofs could save 10 to 19 percent energy in the
top floor of buildings in Hyderabad, potentially reducing citywide air temperature by 2◦C (3.6◦F) and could save five
billions rupees in electricity over 10 years across India. The cool roof deployment has also been studied internationally.
The effect of painting roofs with special reflective coatings on energy use in Florida homes is evaluated in [24]. The
study was done on nine houses from 1991 to 1994, comparing how much electricity they used before and after making
the roofs reflective in the middle of summer. The houses reduced electricity consumption for air conditioning after the
roofs were painted white by upto 42% with an average of 19%. The amount of cooling savings also depend on factors
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like ceiling insulation, reflectivity of roofs, presence of air ducts, sizing of the AC, etc. Pilots in Boston[28], NYC[10]
have also advocated widespread deployment of cool roofs. In 2013, New York City in the U.S. had cooled rooftops
covering an area over 45 acres. This helped offset over 831 tons of 𝐶𝑂2𝑒 (carbon dioxide equivalent)[22].

To track the need and state of implementation of the cool roofs program, various cities collect high resolution
orthorectified imagery of the cities and also label building footprints [12]. However, in the Indian context, with just the
sheer scale of cities and limited resource allocation to this activity, it is imperative to device a cost effective and scalable
solution. Therefore, we do not assume availability of such data and rely completely on satellite sources. There are three
components to our system: i) building footprint extraction using high resolution images from the maxar satellite ii)
reflectance feature extraction from roof images, and, iii) classification of cool vs non cool roof. Extracting building
footprints requires high resolution (<50 cm) imagery typically acquired on demand through satellite maneuvering[2].
Due to this on demand nature, it is costly to acquire. However, services such as Google Maps API[1] allow access to
images captured in the past for almost all locations on earth at a fraction of the cost. Since building construction is a
slower process, this data suffices for polygon extraction. For extraction of reflectance features and specifically infrared
reflectance, however, multiple spectral bands are required which are not available at such high resolution. Hence, we
evaluate various satellites - Sentinel2[11], Planet[13], etc. for this purpose. A review of satellites used in this work is
shared in Table 1. We have explored different machine learning classification methods for cool/nooncool classification.
We also compare the two paradigms for cool roof classification - direct classification (cool vs non-cool) and estimation
of reflectance (derived albedo), thereafter, using a threshold to classify cool/non cool buildings. To learn the latter in
high resolution, we also propose a method to learn reflectivity (albedo) with 3m resolution planetscope bands as inputs
and low resolution albedo measurements from Landsat[33] as target values. We focus our evaluation on methods which
are explainable and interpretable and also demonstrate this understanding through our analysis.

Our key contributions are as follows:

(1) We develop and evaluate an entire pipeline for identification and classification of building roofs as cool/non-cool
roofs. The evaluation uses a mix of quantitative and qualitative evaluation to assess various satellites and
modalities for their efficacy in cool roof tracking.

(2) We device a method for leveraging low resolution albedo estimates from Landsat[33] images with high resolution
satellites and thus provide high resolution reflectance (derived albedo) features for roof images.

(3) We build robust classifiers for cool vs non cool building classification that generalize to different cities, sizes, etc.
(4) We build a prototype dashboard to demonstrate data-driven decision making at a city level, sub-city (pin code)

level and individual building level.

2 RELATEDWORK

Practical deployments of this nature are highly interdisciplinary. The decision making is complex due to various aspects
that need to be understood - materials for cool roofs, urban heat islands, technology for sensing, socio-economic
conditions, etc. We cover related work in this broad range to facilitate broader understanding of the ecosystem.

Roof Materials. There are several materials where commercial products for cool roofing are available now, e.g.,
precoated concrete, asphalt, brick, timber, canvas, PVC, polycarbonate, fiberglass, spray, paint, membrane, and metal
sheet. While white-colored cool roofs are most common, coloured cool roofs are also available for aesthetic purposes.
The colored roofs still have a high reflectivity in the infrared spectrum, making it an effective solution. Cool colored
materials can be defined as spectrally selective substances exhibiting moderate or low visible solar reflectance but
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Satellite
Name

Resol-
ution

Total
Bands Band Names Collection

Frequency

Maxar 0.5m 3 R, G, B On-demand

PlanetScope 3m 8 R, G, B, NIR,
RE, Y, G1, CB Daily

Basemaps 3m 4 R, G, B, NIR Continuous

Sentinel-2 10-60m 13

CA (60), B (10), G (10),
R(10), VRE (20), VRE (20),
VRE (20), NIR (10),
VRE (20), WV (60),
SWIR-C (60), SWIR (20),
SWIR (20)

Every 5 days

Landsat 8 30m 11
CA, B, G, R,
NIR, SWIR1, SWIR2,
PAN, C

Every 16 days

Table 1. Satellite Information - Total bands and frequency of collection. The full forms of bands names are, R: Red, G: Green, B:
Blue, RE: Red Edge, Y: Yellow, G1: Green I, CB: Coastal Blue, CA: Coastal Aerosol, NIR: Near-Infrared, SWIR: Shortwave Infrared,
SWIR: Shortwave Infrared, PAN: Panchromatic, C: Cirrus, VRE: Vegetation Red Edge, WV: Water Vapour. For sentinel the number in
brackets are resolution for that band. If the name of the two bands are same or differentiated with numerics such as 1, 2 etc, it means
that their wavelengths are different

high near-infrared reflectance, leading to moderate solar reflectance and high thermal emittance [32]. The reflectance
characteristics of different cool roof materials are shown in [32]. There have also been efforts in low-income communities
to use local material such as tires and white tarp on metal or asbestos roofs for making temporary cool roofs. This helps
in informal housing, however this solution was discarded being prone to water pooling and diseases on the roofs. In
2017 Ahmedabad and Hyderabad piloted cool roof programs [22]. Picking the right material for a cool roof is essential
but non-trivial. There are lots of choices, and they differ in how much heat they let out, how well they reflect sunlight,
how long they last, and how much they cost upfront. The best material also depends on the weather, the kind of roof
we have, and the HVAC system we use. In some countries, there are groups like the Cool Roof Rating Council that test
and label roofing materials to see how good they are at reflecting sunlight and releasing heat. They have a list of over
1,000 materials, mostly for the U.S. market. In Europe, the EU Cool Roofs Council rates different roof materials using
something called the Solar Reflectance Index (SRI). In India, institutions like IIIT-H have testing centers to see how well
different materials work in the Indian climate.

Monitoring technology. Kim et. al.[17] propose a method for identifying the location of buildings using image
processing techniques applied to digital surface model (DSM) images. Subsequently, it uses this information to determine
the materials present on the roofs of these buildings on DSM images. The approach involves detecting buildings in
satellite images by analyzing road patterns. Then, a Convolutional Neural Network (CNN) is employed to classify the
roofing materials, which include concrete, healthy metal, unfinished roofs, and other types. The Open AI Caribbean
Challenge [4] focuses on predicting the type of roof in drone imagery. The dataset includes overhead images from seven
locations across three countries, featuring labeled building footprints and images with approximately 4cm resolution.
Manuscript submitted to ACM
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The images have 3 channels of RGB and a 4th mask channel of opacity. The goal is to classify each building footprint
based on the roof material type. Solovyeh et. al.[29] utilize a neural network model adapting ImageNet weights to classify
roof materials into categories such as concrete cement, healthy metal, incomplete roofs, and other types. The method
primarily focuses on the analysis of multi-channel images. Concentrating on identifying roof tiles containing asbestos,
Osińska et. al.[23] address the challenges of distinguishing roofing materials using high-resolution satellite images.
Roofs exhibit a wide range of shapes and textures influenced by varying illumination conditions. The proposed solution
involves applying topographic correction to satellite images, aiming to alleviate the impact of lighting variations in
airborne laser scanning (ALS) and WorldView-2 multispectral satellite images. The research assesses the effectiveness
of this approach in classifying roofing materials, specifically utilizing an 8-channel WorldView-2 satellite image. The
results demonstrate that implementing topographic correction enhances the accuracy of material classification. A
strategy to reduce urban temperatures and energy consumption is the widespread application of cool materials with
high albedo and high emissivity in the urban envelope. The objective of [9] is to design a procedure that allows the
discrimination of different roofing materials within the Metropolitan Area of Mendoza, Argentina, to determine the
possible energy savings and improvements in urban micro-climatic conditions associated with the increase of albedo in
the roofs of the city. They work with Sentinel 2a imagery and figure out what materials are on the roofs and 3 series of
spectral signatures were obtained from built urban areas. Big cities growing quickly change the natural environment a
lot. The use of concrete and asphalt has had direct impacts on the urban environment such as land-surface temperature
(LST) and atmospheric dynamics. Using lots of concrete and asphalt makes cities hotter and affects the weather. These
changes to the climatic variables have long-term and short-term consequences.

Urban Heat Island Understanding. A study was conducted on Auburn University’s campus to accurately measure
Land Surface Temperature (LST), solar irradiance, and albedo using remotely sensed images and geographic models [14].
The objective was to comprehend how environmental changes might impact energy consumption. They employed a
statistical model to reveal the connections between natural changes and urban settings, providing insights into potential
future scenarios. Identifying these connections enables strategic planning, including the consideration of cool roofs that
help lower temperatures by reflecting sunlight. The study utilized data sources such as Landsat 8 OLI (Operational Land
Imager sensor) with a resolution of 30 meters, OpenStreetMap, Google Earth, and LiDAR imagery at approximately 3
meters resolution. Understanding how much sunlight a single roof reflects or how much surface albedo at individual
roof scale is also studied. A method is presented by Kalantar et. al.[16] for quantifying surface albedo of individual
roofs in a complex urban area using the integration of Landsat 8 and airborne LiDAR data. First, individual roofs were
extracted from airborne LiDAR data and orthophotos using optimized segmentation and supervised object based image
analysis (OBIA). Support vector machine (SVM) was used as a classifier in OBIA process for extracting individual
roofs. After that, surface albedo was calculated for each individual roof from Landsat images and generated thematic
maps of mean surface albedo of individual roofs. To assess the impact of greenery and photovoltaic panels, Wu et.

al.[34] introduced Roofpedia, a system for tracking solar and green roofs across 17 cities. The authors present a set of
three contributions: (i) Utilizing satellite imagery for the automatic identification of pertinent urban roof types; (ii)
Establishing an accessible roof registry to map out the spatial layout and size of solar and green roofs among over one
million buildings spanning 17 cities; and (iii) Introducing the Roofpedia Index, derived from the registry data, to assess
and compare cities based on their adoption of sustainable roof practices, including solar and green roof implementation.
They utilized satellite images with a resolution of 50 centimeters through the Mapbox static tiles API. Additionally,
information about building footprints was extracted from OpenStreetMap. Using image processing techniques on
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WorldView-3 sensor images [31] identifies buildings with asbestos roofs near Prato, Italy. [30] leverages deep learning
techniques for the automated classification of roof characteristics from very high-resolution ortho-photos and airborne
LiDAR data obtained in Dominica following Hurricane Maria in 2017.

Policy/regulations on cool roofs. Indian cities of New Delhi, Ahmedabad, and Hyderabad are leading with initiatives to
adopt cool roofs on public and government buildings. Ahmedabad and Hyderabad are working with Natural Resources
Defence Council (NRDC), Administrative Staff College of India (ASCI), Public Health Foundation of India (PHFI) and
Indian Institute of Public Health Gandhinagar (IIPH-G) to develop their cool roof programs. After successfully trying
out cool roofs in Hyderabad in 2017 [22], the Telangana Cool Roofs Policy 2023-2028 suggests using cool roofs to handle
extreme heat, make people more comfortable, and reduce hot spots in Telangana’s cities. The policy aims to install
at least 300 square kilometers of cool roofs by 2028. Even internationally, the research conducted by [12] examines
the effectiveness of New York City’s cool roof program in mitigating the urban heat island effect. The study tries to
answer two questions: 1) To what extent do cool roofs contribute to reducing land temperatures? 2) Is there a trend
of increased usage of cool roofs in neighborhoods experiencing the highest levels of heata? The goal is to see if the
cool roof program is being done fairly across the city and helping the areas that need it the most. In 2020, New York
City had 158.52 km2 of rooftops, and about 38% of them had cool roofs. To create a cool roof dataset for New York
City in 2020, they combined Landsat OLI Level 2 Science Products images from 2018 and 2016 with New York State
orthoimagery from 2020. The Landsat images were used to train an algorithm to measure roof reflectivity based on
methods by Liang (2001) and Smith (2010) [20] for Landsat 5 and 8 bands, respectively. The resulting dataset provides
roof reflectivity values on a 0-1 scale, identifying cool roofs as those with reflectivity values above 0.6. The details of
the method is descibed in Section 4.2.2. Vector datasets, including building footprints, borough boundaries, and the
Heat Vulnerability Index (HVI) were integrated. Statistical analysis, including descriptive statistics, correlation, and
multiple linear regression, was used to assess the effectiveness of cool roofs in mitigating land surface temperatures. A
two-way ANOVA evaluated their implementation in heat-vulnerable neighborhoods.

Our work in context. The translation of these works to the Indian setting had a few special considerations: i) We
wanted to build a scalable method with limited financial allocation to the activity, thereby restricting us to the use
of satellite imagery ii) We’d still like to capture the reflectance of a diverse set of buildings - in terms of their sizes,
architectures and locations. Smaller buildings pose a challenge compared to larger ones due to several reasons: satellite
images have limited resolution, meaning they can only capture details down to a certain size. Smaller buildings may not
be clearly visible or distinguishable in the images, especially if the resolution is not high enough (refer Figure 2). This
limited resolution can make it difficult to precisely identify the boundaries and characteristics of smaller buildings. Also
small buildings may be overshadowed by larger surrounding structures or objects, making them difficult to identify
or analyze accurately in the satellite images. Additionally, smaller buildings may blend into their surroundings more
easily, further complicating their detection. This can make it challenging to extract meaningful information about the
roofs of smaller buildings from the images alone. Factors like cloud cover, shadows, or vegetation can obscure smaller
buildings in satellite imagery, further complicating the analysis process. These factors can reduce the visibility of small
buildings and make it harder to accurately assess their roofs.

In our research, we utilize 50cm resolution RGB satellite images from Maxar for building polygon extraction but
utilizes Planetscope[13] satellite images with a resolution of 3 meters for capturing the refletance information in different
bands. The 50cm resolution images are limited to RGB bands only. In contrast, our study investigates the utilization of
multiple bands for classification, which offers more comprehensive data compared to traditional RGB images. However,
Manuscript submitted to ACM
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Maxar PlanetScope Sentinel2

Fig. 2. Example images of the same region from Maxar, Planet and Sentinel satellites. The resolution of images decreases from 50 cm
in Maxar to 3 cm in Planetscope and 10 m in Sentinel2. However, the range of spectrums captured increases through the images
with RGB in Maxar, 8 bands in Planetscope (in visible and near infrared spectrums) and 13 bands in Sentinel2 (including long wave
infra-red spectrum which can directly sense heat).

even with this additional information, feature engineering becomes crucial, especially when dealing with the extraction
of satellite building polygons, which tend to have a diverse range of polygon sizes. We also developed a specialized
dashboard for cool roofs to aid urban planners in making policy decisions. This dashboard offers comprehensive analysis
at multiple levels, including city-wide, pin-code level, and individual building insights. In our Hyderabad city dashboard
(Figure 1), cooler regions are represented by shades of blue. Density information is provided for each pin code, allowing
us to visualize the distribution of cool roofs and identify the coolest areas based on density. This visualization not only
highlights the distribution of cool roofs but also identifies the coolest areas based on density. These detailed insights
can inform urban planners about the effectiveness of cool roof initiatives and guide strategic interventions to mitigate
urban heat island effects and enhance urban resilience. Further validation of this dashboard is outside the scope of this
work.

The paper is organized into sections as follows: In Section 3, we present the qualitative analysis for building polygon
and reflectance image extraction. Section 4 delves into the machine learning choices for classification of cool roofs. Our
results are presented in Section 5, followed by a further analysis of intuition behind features learnt in Section 6. We
present the details of our first dashboard prototype in Section 7 and conclude with Section 8.

3 BUILDING POLYGON AND IMAGE EXTRACTION

In Figure 2, we show views of the same buildings through different satellite images. As is evident from Figure 2,
high resolution imagery is required for accurate building polygon extraction. In this section, we discuss how building
polygons, and thereafter, multispectral signatures of roof reflectance, are extracted from satellite images. We qualitatively
evaluate how different choices, i.e., which satellites and resolutions are appropriate for this application. This section
also elaborates on the collection of ground truth data used for training the classifier.

3.1 Building footprint extraction

Here, we evaluate four distinct methodologies, each contributing unique insights into the extraction process. These
are state of the art methods in computer vision which use supervised/semi-supervised methods for building polygon
extraction. A typical pipeline consists of a segmentation model that identifies building pixels from the overall image.
This extracted blob is then polygonized with the help of a post-processing step to extract the exact polygon for the
building. Since the focus of the paper is towards roof reflectance features and classifier design, our evaluation of these
methods was qualitatively done. There is also lack of annotated datasets for building polygons in the Indian setting.
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Fig. 3. Qualitative comparison of extracting building polygons using pre-trained models. (a), (b), (c) Prompt SAM (prompt used:
buildings) [36] on tifs gives us low precision results, a huge amount of soil, land, greenery or background area is also getting
extracted with buildings. Also, it is not able to extract seperate buildgs. (d), (e), (f) Using PolyWorldPretrainNetwork [38] - Buildings
are exracted with very low recall. (g), A qualitative comparison of extracting building polygons using pre-trained models. Using
OpenBuildingDataset - Even the small buildings are extracted. (h) Offset Imagery with OpenBuildingDatset - The extracted polygons
have a little bit of a shift. In some images, this shift is quite big, but in most images, it’s just a small shift. These are the biggest shifts
found in the dataset. (i) Building in shadow - images lying in shadows so we remove them while pre-processing.

(1) PolyWorldPretrainedNetwork This neural network directly extracts building vertices from images, forming
accurate polygons by predicting connection strengths between vertices using a graph neural network [38]. The
assignments are determined by solving a differentiable optimal transport problem, and the vertex positions are
optimized by minimizing a combined segmentation and polygonal angle difference loss. This network is trained
on CrowdAI Mapping Challenge dataset. As depicted in Figures 3a, 3b, and 3c, we observe a minimal number of
accurately extracted building images from a vast pool of existing buildings.

(2) GlobalMLBuildingFootprint This dataset employs a two-stage process [21] for building extraction. The initial
stage involves semantic segmentation, wherein building pixels are recognized on aerial images using deep
neural networks. Subsequently, the pixel detections are converted into polygons through a process known as
polygonization. They provide geometry for different parts of the world. However, the details they provide for
buildings in India aren’t as useful for our specific project.

(3) Segment Anything Model (SAM) We also explored Segment Anything Model[18], which involves a new task,
a model, and a dataset for image segmentation. This is a foundation model for image segmentation, trained in
self-supervised fashion. The anticipated segments encompass 5 to 6 buildings within each segment. With lack
of large scale annotations, this is not a feasible model and also it is trained on non-geospatial data. We also
evaluated segment-geospatial [36], built on SAM for geospatial data. However, it doesn’t give promising results
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Model Method Trained on Number of Samples

PolyWorldPretrainedNetwork Graph Neural Network CrowdAI Mapping
Challenge dataset >280k

GlobalMLBuildingFootprint 2-stage process (semantic segmentation
and polygonization) - -

Segment Anything Model Self-supervised RGB Images 1 billion masks

SAMGeo Python package for segmenting
geospatial data with the SAM - -

OpenBuildingDataset Instance segmentation and self-training 50 cm Maxar imagery 100k
Table 2. Models and Methods for Polygon Extraction: pre-trained methods for polygon extraction, including information on the
satellite/image source they were trained on and the number of samples used.

with zero-shot learning on our data. As shown in Figures 3d, 3e, and 3f, when using text as input to identify
buildings, it captures a lot of background noise and misses many buildings.

(4) OpenBuildingDatasetWe found results from continental-scale building detection from high-resolution satellite
imagery [27], with a focus on the entire continent of Africa, using 50 cm satellite imagery. This approach utilizes
a model training pipeline based on the U-Net architecture. The study delves into variations in architecture, loss
functions, regularization, pre-training, self-training and post-processing, aiming to enhance instance segmenta-
tion performance. The experiments involve a dataset comprising 100k satellite images across Africa, with 1.75M
manually labeled building instances. Examples are shown in Figure 3g.

Among these methods, as summarized in Table 2, OpenBuildingDataset exhibited superior performance across
various scenarios (as assessed qualitatively), including the number of buildings extracted, the accuracy of extracted
buildings with minimal offset, and the ability to extract the least amount of background noise. Consequently, it was
selected over the other methods. To capture limitations of this model on our data, we want to highlight that despite the
inclusion of a diverse range of training data, the OpenBuildingDataset faces challenges in certain scenarios – geological
or vegetation features that may be mistaken for built structures, settlements with numerous contiguous buildings
lacking clear delineations, areas characterized by small buildings which may appear only a few pixels wide at the
given image resolution, rural or desert areas where buildings constructed with natural materials visually blend into the
surroundings. Regions with high-rise buildings pose challenges, as the model is trained to detect building rooftops
rather than bases. As a result, depending on the satellite image’s viewing angle, the roofs of high-rise buildings may
shift, making it difficult to track buildings consistently across a stack of imagery in a given location. Figure 3g shows
that even the tiniest buildings are captured well. However, in Figure 3h, some images have a noticeable offset. The
paper [27] suggests that this might be due to past imagery being used for prediction of polygons. The offset leads to a
number of non-building pixels (shadows or other materials around the building) to be captured Figure 3i.

3.2 Building image extraction

3.2.1 Planet daily imagery. The planetscope satellite covers (almost) daily images of most regions on earth through a
constellation of low earth orbit satellites. These are made available soon after using the planetscope explorer/API. The
Planet (8 bands) images were obtained using the PSB.SD Super DOVE instrument type featuring Red, Green, Blue, NIR,
Blue, Red Edge, Coastal, Yellow, and Panchromatic bands. Figure 4 shows some samples. Note that the values in these
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(a) Small rectangular building (b) Long rectangular building

Fig. 4. We used the extracted building polygons using OpenBuildings and extracted red channel from the planet 8 band (surface
reflectance product) and 4 band (basemap) images. One can observe that depending on the shape of the building, different number of
pixels might be returned.

bands are in very different numerical range. Thus, normalization is required before visualization. QGIS[26] has built in
visualization functions for such data as well.

3.2.2 Planet Basemaps. Planetscope uses the daily satellite images and combine them for images that are consistent for
scientific use. Both daily images and basemaps are ortho-rectified. Additionally, basemaps are spatially accurate data
with minimized haze, light, and topographic effects, also seasonally color-balanced, seamless, and cloud-free. Basemaps
have 4 bands instead of 8. Figure 4b. The data sourced for non-cool roofs is same as sourced for Planet (Table 3). Here
also to enhance the diversity of our dataset, we extract images from three months (Table 4). Also, we ensured here that
all the collected tiles had a minimal cloud cover, specifically less than 3%.

Region Cool/Noncool Min/Max Confidence Min/Max Area (𝑚2) Count

Hyderabad Cool 0.6504, 0.9408 10.394, 7914.757 185
Noida Cool 0.6512, 0.8905 10.1001, 3697.3973 41
Tamil Nadu Cool 0.6524, 0.966 5.7126, 8144.7421 181
Noida Noncool 0.6502, 0.9415 6.2636, 5996.127 718
Hyderabad Noncool 0.6506, 0.9208 6.2657, 1707.1257 199
Other Noncool 0.6508, 0.9434 6.3303, 1978.695 915

Table 3. Polygons from OpenBuildingDataset for our dataset. The table has information about the region, confidence of being a
building (min/max), area information and total number of buildings extracted in that region

3.2.3 Sentinel 2. We also extracted images from Sentinel 2A satellite. We used all the bands at 10m and 20m resolutions.
The building polygons often intersect with 1-2 pixels of the satellite image. These values are used as is. However, for a
better estimation of reflectance, we derive a number of features from these images as discussed in Section 4.2.

3.2.4 Landsat. In the literature, one common method for estimating reflectance is to measure albedo. Albedo measure-
ment can only be done through 5 bands (NIR, Shortwave and C-bands) from the landsat satellite at 30m resolution. In
this work, we also derive a high-resolution albedo using Planetscope pixels as input and albedo as output. For obtaining
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Hyderabad
(cool)

Tamil Nadu
(cool)

Noida
(noncool)

Noida
(cool)

Anand
(noncool)

Hyderabad
(noncool)

July August August August August July
Months June June June June June June
(Basemaps) May May July July July May

10 August 21 August 17 August 12 August 1 June 10 August
Dates 31 May 29 May 11 June 14 June 31 May 31 May
(Planet 8 bands) 24 May 24 May 14 June 11 June 24 May 24 May

Table 4. Basemaps and Planet imagery extraction information - To incorporate any temporal fluctuations, we extracted information
from three months/dates in 2023.

high-resolution albedo data, we utilized Landsat 8 imagery at a resolution of 30 meters and 3m resolution Planetscope
imagery.

4 PROPOSED METHODOLOGY

4.1 Ground truth

In our data collection process, we obtained ground truth data for both cool and non-cool roofs by searching for public
announcements from companies and buildings regarding the installation of cool roofs. We conducted this search
through news articles related to cool roofs. Additionally, for some samples, we contacted manufacturers involved in
installing cool roofs to gather relevant data. We visually validated the roofs, as depicted in Figure 5. Cool roofs appear
brighter than non-cool roofs even when visualized in RGB spectrum (although we found that reflectance was a better
measure). Specifically, we identified cool roofs in Hyderabad, DLF Noida, and Tamil Nadu. For non-cool roofs, we
sourced data from areas including Noida, Hyderabad and Anand, Gujarat making our first set. In total, as shown in
Table 3 our dataset comprises 407 cool roof buildings and 1832 non-cool roof buildings from single date imagery. To
enhance the diversity of our dataset and incorporate temporal robustness, we extracted information from three dates
for the same buildings as shown in Table 4. Additionally, we ensured that all the collected tiles had a minimal cloud
cover, specifically less than 3%. In total (for 3 dates), our dataset comprises of 1221 cool roof buildings and 5496 non-cool
roof buildings, making our second set. We were also able to obtain 139 images through information shared by some
cool roof manufacturers about their deployments. These images show different materials used for making roofs cooler,
making our third set. The data encompasses different places, and variations in both area range and confidence of being
a building from OpenDatasetBuilding as shown in Table 3. The information for all three sets is in Table 5.

4.2 Roof Feature Extraction

The primary objective is to create a binary classification system that can accurately determine whether a given roof is a
“cool roof" or a “non-cool roof". We have experimented with 5 machine learning models namely, decision tree, random
forest, logistic regression, multi-layer perceptron and gradient boosting with F1-score, precision and recall as metric for
binary classification with losses as described in Table 7. All the classification results are F1 scores at an empirically
derived confidence threshold of 0.5.

For images with 8 bands, we’ve extracted a total of 132 features for each color space. These features include statistics
like mean, variance, entropy, minimum, maximum, median, range, 25th and 75th percentiles, coefficient of variance,
skewness, kurtosis, and local binary pattern, making a total of 104 features across all bands. Additionally, we’ve
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Fig. 5. Visual validation of our dataset, where the top row showcases regions with cool roofs and the bottom row showcases regions
with non-cool roofs. From left to right in the top row, buildings are located in Hyderabad, Tamil Nadu, and Noida. In the bottom row,
from left to right, the locations are Hyderabad and Anand. Cool roofs should appear brighter compared to non-cool roofs

Check the overlap
between Planet and

Landsat imagery

Extracting building
footprints from

Landsat imagery
using geometries.

Calculate albedo
from Landsat bands

using the center
pixel of the image.

Building
geometries

Planet imagery Extracting building
footprints from Planet

imagery using
geometries.

Feature
extraction

Classification
model

Cool/non-cool
predictions for

planet
imagery

Regression
model

Albedo
predictions for

Planet
imagery

Consider images with
100% overlap

Else discard images

Fig. 6. We evaluate two approaches to cool roof classification: one focuses on feature extraction and cool roof classification methods
while the other employs albedo extraction and regression for predicting high resolution albedo values (derived albedo) on planet
imagery. Pass the geometry of the buildings (from OpenBuildings) to planet satellite imagery, extract roofs from the satellite images.
Once we have the extracted satellite images for the buildings, extract useful features for each building. For the other branch in the
pipeline, we pass the geometry of the buildings to landsat satellite imagery to extract roofs. To ensure correct mapping of planet and
landsat pixels, we filter buildings where there is 100% overlap between the planet and landsat pixels. We calculate center pixel albedo
or median albedo using landsat bands. Apply regression with planet band values as input and albedo values as output and we will
have high resolution derived albedo predictions from planet imagery.

calculated the correlation between all color channels, such as red-green, red-blue, red-NIR, and so on, making a total
of 132 features. This involves examining how these color channels relate to each other, giving us insights into the
relationships within the image data. Table 6 displays features and explains why each feature is chosen.
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Region Cool/Noncool First Set Second Set Third Set

Hyderabad Cool 185 555 555
Noida Cool 41 123 123
Tamil Nadu Cool 181 543 543
miscellaneous Cool 139

407 1221 1360
Noida Noncool 718 2154 2154
Hyderabad Noncool 199 597 597
Other Noncool 915 2745 2745

1832 5496 5496
Table 5. Description of all three sets used in this paper for cool/non-cool classification.

Feature Intuition

Mean Average pixel intensity, higher for reflective cool roofs
Minimum Minimum pixel intensity, lower for potentially non-cool roofs
Variance Spread of pixel intensities, higher for diverse materials
Maximum Maximum pixel intensity, higher for reflective cool roofs
Entropy Image complexity, lower for repetitive patterns in non-cool roofs
Median Middle pixel intensity, less sensitive to extreme values
Range Difference between maximum and minimum intensities
25th Percentile Value below which 25% of pixel intensities fall
75th Percentile Value below which 75% of pixel intensities fall
Coefficient of Variance Relative variability of pixel intensities, higher for diverse materials
Skewness Asymmetry of pixel intensity distribution, indicating certain patterns
Kurtosis Sharpness of pixel intensity distribution, higher for concentrated values
Local Binary Pattern (LBP) Captures local texture patterns, useful for identifying variations
Color Channels Correlation Correlation between color channels, specific to reflective cool roofs

Table 6. Features extracted from images with 8 bands and their intuition for cool roof classification.

The process for cool rool classification is as follows and architecture is as shown in Figure 6 We downloaded high-
resolution satellite imagery of the area of interest. From OpenBuildingDataset we acquired geometry of each building.
Using the geometry information we extracted building polygons from the satellite imagery. This involves rasterio,
geopandas operations to overlay the building footprints on the satellite imagery, essentially cropping or masking the
imagery to include only the regions where the buildings are located. Then we extracted relevant features from these
polygons for use in the classification model. These features served as input variables for the machine learning model. To
prevent overfitting, we used k-fold validation with 5 folds. Once the model is trained and validated, we made predictions
on the cities. This involves applying the model to additional satellite imagery to classify cool roofs across a larger area
or for a different time period. The frequency and band information for every satellite is described in Table 1.

4.2.1 Effect of Color Space. We tried out different features taken from various color spaces [19]. The idea behind this is
that each color space has its own special qualities or advantages.

RGB (Red, Green, Blue): This is the familiar color model based on how we humans see and understand colors. It’s
great basic color perception, but it might struggle to capture subtle color differences, especially in different lighting
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Model Loss Function Formula Description

Multi-layer Perceptron (MLP),
Logistic Regression,
Gradient Boosting

Cross-Entropy Loss
− 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝑝𝑖 )

+(1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 ) ]
Measures the dissimilarity between
predicted probabilities and true bi-
nary labels. Penalizes the model
more for confidently incorrect pre-
dictions.

Random Forest,
Decision Tree Gini Impurity 1 − ∑𝐾

𝑘=1 𝑝
2
𝑘

Measures the impurity or disorder
of a set of labels. The Gini impurity
is minimized by splitting the data
based on the feature that best sepa-
rates the classes.

Table 7. Loss Functions used for machine learning models. 𝑦𝑖 represents the true binary label of the 𝑖-th instance. In the context of
binary classification, 𝑦𝑖 is either 0 or 1, indicating the true class of the instance. 𝑝𝑖 represents the predicted probability of the positive
class (class 1) for the 𝑖-th instance. In logistic regression and similar models, 𝑝𝑖 is the model’s estimate of the probability that the 𝑖-th
instance belongs to the positive class. 𝑘 : is often used as an index variable in summations. In the context of the Gini impurity formula,
𝑘 represents the index of a particular class in the set of classes. 𝑁 represents the total number of instances in the dataset or the total
number of samples.

conditions. HSV (Hue, Saturation, Value): This model represents color itself, along with intensity and brightness. It’s
handy for detecting changes in color intensity or brightness, which can be important when dealing with features like
cool roofs. LAB: This is a uniform color space, meaning that a similar numerical change in color values corresponds
to a similar perceived change in color. It’s useful for capturing subtle color differences accurately. This is especially
important when precise color information is important, such as identifying delicate variations in roof colors.

The findings indicate that only using the RGB color space is sufficient to capture all the details mentioned earlier,
and the outcomes are at their best when only RGB colors are used.

4.2.2 Measuring direct reflectivity. The New York City dashboard Flohr et. al. [12] is created using a mix of satellite
images and geographic data. The work created roof albedo measurements for the year 2020 using Landsat-8 (Landsat
OLI Level 2 Science Products images from 2018 and 2016) and ortho imagery for New York State. Landsat images were
used to train an algorithm to measure reflectivity using ortho images. First, they used the reflectance of Landsat images
to measure the narrow band surface albedo using the method developed by Liang [20] for Landsat 5 images. To use
similar wavelengths for Landsat 8 bands they modified Liang’s Landsat formula to calculate Landsat shortwave albedo
using Smith’s (2010) [20] normalization method below:

albedo =
0.356 · 𝑏1 + 0.130 · 𝑏3 + 0.373 · 𝑏4 + 0.085 · 𝑏5 + 0.072 · 𝑏7 − 0.0018

0.365 + 0.130 + 0.373 + 0.085 + 0.072
where 𝑏1 is band 1, 𝑏3 is band 3, 𝑏4 is band 4, 𝑏5 is band 5, and 𝑏7 is band 7.

(1)

As we can observe, this uses 8 band information from the satellite Landsat including bands that are not present on
planetscope images. However, landsat has a poor resolution of 30m per pixel. Therefore, it cannot be used directly for
roof reflectivity estimation. We therefore learn a regression model with output as albedo and input and the bands from
planetscope satellite. We extract albedo values from Landsat images specifically at the center pixels of buildings [12]
where there is complete overlap between Planet and Landsat images. Subsequently, using the center pixel information
from Planet images, we predict the albedo values obtained from Landsat images. For each building shape, we extracted
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Landsat images in TIFF format. Even if the building shape covers only a small fraction of a pixel in the Landsat image,
the intersection operation identifies all the pixels it overlaps with as shown in Figure 7a. Since raster data is pixel-based,
the result includes entire pixels intersected by the building shape, even if only a part of the pixel is covered. To ensure
compatibility, we reprojected the Landsat image to match the resolution of the Planet image. Then, we created a
bounding box that encompasses both images and calculate the percentage of overlapping area within this common
extent. We only considered buildings with a 100% overlap. We also checked additional area percentages. If both "Y
beyond X" and "X beyond Y" were 0, we kept these data points as Figure 7b. We removed data points where all band
values needed for calculating albedo are zero or NaN. With data from a single day, we captured around 200 buildings
based on these constraints, focusing specifically on Hyderabad. In total, 5724 buildings are extracted using multiple
days. Flohr et. al. considered a roof reflectivity less than 0.6, a dark roof and otherwise, a cool roof. We verify the recall
using this criterion on our dataset. Results are described in Section 5.2.

5 CLASSIFICATION RESULTS

5.1 Choice of imagery for classification

As described in Section 3.2, there are a number of satellite options when classifying roof reflectance depending on the
number of bands and the frequency/cost of data collection. Since Maxar is impractical from a cost point of view, we
explore sentinel and planet based classifications. The Sentinel satellite imagery provides details at a resolution of 20
meters, capturing the Earth’s surface with moderate spatial precision.

The evaluation of the cool roof classification models trained on Sentinel-20m data is presented in Table 9. The
outcomes, as shown in the table, do not exhibit highly encouraging results. The model performance metrics, including
accuracy for random forest are reported for various scenarios such as considering all bands, individual bands (Red,
Green, Blue, NIR), and more. These results provide insights into the challenges and limitations associated with using
Sentinel-20m imagery for cool roof classification. Table 8 shows the classifier performance with 8-band planet images
as well as 4-band planet basemap images. One can observe that the 8-band images consistently provide better classifier
performance. We conducted experiments using Basemaps for the same dates and locations as our Planet-8 bands dataset.

Choice of color space. Across all classifiers (Table 8), RGB and LAB performed consistently well as compared to HSV
or a combination of the three. It is also observable that the rest of the 5 bands are also important for the classifier since
taking only the RGB/LAB colorspaces doesn’t result in high accuracy classifiers.

Dimensionality reduction. To reduce any overfitting that might be happening due to large number of features, we ran
PCA on the features reducing the space to 30 dimensions. the right side table represents the results after PCA.

Sanity Test. We tested the top 2 contenders - RGB* and LAB with a sanity test where we ran the model over the
entire city of Hyderabad and reported % of cool buildings. We found that LAB resulted in as high as 25% cool buildings
while RGB* resulted in 20% cool buildings. This suggested that the model may have overfit. We therefore chose RGB* as
the color space for our classification. The MLP model with 30 features from PCA dimension reduction works best with
a recall of approximately 0.8944 means that the model is able to correctly identify about 89.44% of the actual positive
instances and a precision of approximately 0.8571 meanns that when the model predicts a positive outcome, it is correct
about 85.71% of the time.
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BASEMAPS DT RF LR MLP GB

RGB 82.35 78.99 69.74 76.05 77.73
HSV 83.19 78.99 71 78.57 79.83
LAB 80.67 80.25 74.36 84.4 79.9
RGB-HSV-LAB 76.05 80.67 78.15 81.51 77.77

SR DT RF LR MLP GB

RGB 83.29 87.17 83.23 87.74 83.19
HSV 80.72 81.67 78.72 81.97 81.96
LAB 83.15 84.76 80.85 89.08 83.21
RGB-HSV-LAB 78.78 83.6 82.73 84.35 81.98
RGB (3 bands) 72.99 77.58 71.06 73.26 72.02
HSV (3 bands) 58.4 60.21 58.79 55.74 51.13
LAB (3 bands) 55.21 60.52 61.57 65.94 59.93

SR DT RF GB Log Reg MLP

RGB* 82.77 80.25 76.05 70 84.03
HSV* 78.99 81.09 76 71.84 83.61
LAB* 79.41 85.71 77.31 73.94 83.61
RGB-HSV-LAB* 82.35 82.77 79.41 76 86.55

SR DT RF LR MLP GB

RGB* 76.54 86.02 82.38 87.26 83.50
HSV* 71.25 73.87 78.41 81.05 75.43
LAB* 70.49 80.12 80.55 86.94 78.56
RGB-HSV-LAB* 75.54 75.75 81.78 81.97 81.3

Table 8. Roof classification F1 scores on test set of "second set" across Planet Basemap and Surface Reflectance (SR) images. *
represents that PCA was used before classification. Observe that - 8 band images perform better than basemaps or 3 band images;
RGB* and LAB are the top performers; MLP performs best out of all models.

Sentinel-10m RF
All 67.74
R 64.71
G 61.29
B 64.51
NIR 63.53

Table 9. Roof classification F1 scores on the test set of "second
set" using the Sentinel2 data. Compared to Table 8, we note that
planet based classification has much better accuracy.

SR Train Region No of Samples MLP

RGB Hyd 1110 94.85
RGB Tamil Nadu 1086 94.99
RGB Hyd + aug 1510 97.37
RGB Tamil Nadu + aug 1486 95.12
RGB all + aug 3054 92.51

Table 10. This table shows the effect of adding augmentations
(gaussian noise, smoothing, scaling and noise) to the dataset
containing Planetscope 8-band surface reflectance (SR) images.
We observe that the augmented dataset with hyderabad region
images provide the best accuracy. The numbers are reported
on a test region containing roof samples from all cities (non-
overlapping with train region).

Adding augmentations. In our effort to enhance the effectiveness of our model for cool roof classification, we applied
several data augmentation techniques to our relatively small dataset. These augmentations aim to artificially expand
the dataset and introduce variability to help the model generalize better. We implemented four types of augmentations:
mixing, gaussian smoothing, adding noise, and scaling. For cropping, we randomly selected some indices in two feature
vectors and swapped their values, effectively altering a third of the feature values. This helps the model learn from
different perspectives and focuses on specific details, preventing it from relying too heavily on the exact position of
features. Gaussian smoothing involved applying a Gaussian filter with a sigma value of 0.4 to the 132-feature vector.
It helps reduce noise and fine details in a vector, making the model more robust to minor variations and ensuring it
focuses on essential features. Additionally, we introduced random uniform noise to the feature vector, with a noise level
set to 0.1. By simulating real-world imperfections, the model becomes more resilient to noise and small fluctuations,
improving its performance on less pristine data. Lastly, we scaled random features in the vector within a specified
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Name Values Name Values

Satellite Planet Bands 8
Features 132 Color Space RGB
PCA 30 Model MLP
Iterations 1000 Layers 2
Activation ReLu Optimizer Adam
Learning rate 0.001 L2 regularization 0.0001
Neurons [64, 8] Scaling Scaling factor range (0.1, 0.4)
Cropping 30 Gaussian Smoothing Sigma = 0.4
Adding Noise Noise level = 0.1

Table 11. Information about Model and Data Augmentations for Cool Roof Classification

(a) Partial overlap between planet and
landsat images

(b) Full overlap between planet and land-
sat images

Fig. 7. Landsat image extraction - (a) The intersection operation identifies all pixels that overlap with the building shape, even if it
covers only a small fraction of a Landsat pixel. (b) We match the resolution of Landsat with Planet images and buildings with 100%
overlap are considered, we keep data points where both "Planet beyond Landsat" and "Landsat beyond Planet" are 0

scaling factor range of (0.1, 0.4). This variation helps the model adapt to different scales and understand features at
various sizes, promoting better generalization to diverse inputs. These augmentations proved beneficial for our cool roof
classification task, as they introduced diverse variations in the data, helping the model to better capture and understand
patterns, ultimately improving its overall performance.

With augmentations on Hyderabad data we achieved 97.37 F1-score with a precision of approximately 96.3% means
that out of all the instances the model predicted as positive, about 96.3% were correct, and only 3.7% were false alarms
(incorrectly predicted positives) and a recall of approximately 94.6% means that the model identified about 94.6% of all
the actual positive instances, and 5.4% of positive instances were missed (false negatives). The outcomes of training our
model using both Noida data and the entire dataset, along with augmentations, are presented in Table 10. The model on
Hyderabad data along with augmentation performs well possibly due to a larger number of samples from the city. The
joint model doesn’t work as well possibly due to the difference in the distribution of samples from the two cities and
hence, a difficulty in model convergence.

From our experiments, we found that using Planet’s 8-band RGB images, applying PCA (Principal Component
Analysis), and incorporating augmentations yielded the best results for classifying cool roofs. Moreover, this approach
demonstrated good generalizability when applied to other cities. Also the parameters for augmentations along with
best model details are summarized in Table 11.
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5.2 Reflectivity based classification

Flohr et. al.[12] suggested the use of albedo as a measure of reflectivity (Section 4.2.2). To validate this use, we find the
classification accuracy based on the reflectivity using a threshold of 0.5. We focused on buildings with more than 4 pixels
(a total of 2889 samples) and calculated albedo by taking the median of raw albedo values from 5 pixels. Additionally,
we used Planet pixels as input and a linear regression model to predict albedo for the 5 pixels. However, we couldn’t
distinguish between cool and non-cool values with high accuracy (Table 12). This lack of distinction may be due to
our imagery having a 3m resolution. It’s possible that we need higher resolution data or additional pre-processing to
improve the results. Therefore, direct reflectivity based classification is not a feasible approach for our use case.

Model Bands RMSE F1 score

LR Basemap (4) 0.14 69.45
RF Basemap (4) 0.13 68.75
MLP Basemap (4) 0.145 60.63
LR Planet SR (8) 0.138 50.36
RF Planet SR (8) 0.133 59.37
MLP Planet SR (8) 0.14 51.99

Table 12. Using the derived albedo reflectivity, we classify roofs into cool/noncool using a threshold of 0.5 on our "second set". Note
that the best model on Planetscope SR (MLP) had an F1-score of 97% after augmentation and 89% before augmentation. Models:
Linear regression (LR), Random forest (RF), Multilayer perceptron (MLP). This suggests that using albedo for classification into
cool/non-cool is not a reliable approach.

Place cool % non-cool % cool non-cool total Date cool area % BCQ
Hyderabad 4.58 95.41 44936 930879 1002825 10-8-23 7.18 6
Chennai 4.07 95.92 14592 343933 358525 14-12-23 3.89 8
Chandigarh 0.53 99.46 889 166942 167831 14-12-23 63.22 1
Kolkata 0.99 99.01 1589 306153 307742 9-12-23 8.4 5
Ahmedabad 7.21 92.78 155507 2001320 2156827 13-12-23 20.9 4
Mumbai 1.49 98.5 12237 809063 821300 03-12-23 4.41 7
Delhi 0.66 99.33 201 29900 30101 17-12-23 48.87 2
Bangalore 23.58 76.41 893744 2896523 3790267 20-11-23 37.24 3

Table 13. Planet 8 bands - city prediction. The table displays the number of cool and non-cool buildings, along with their percentages,
the total number of buildings in each city, and the date when the imagery was captured. The prediction are made on model trained
with Planet-8Bands-Hyderabad-RGB-PCA-Augmentations. Building Coolness Quotient (BCQ) ranking is based on the prevalence of
cool roofs among buildings.

5.3 Scaling it to multiple cities

To capture the performance of cities with respect to cool roof deployment we introduce Building Coolness Quotient
(BCQ) which estimates the coolness of a region via the proportion of buildings which are cool. We estimated the BCQ
of 8 cities using our best model (MLP on 8 band planet imagery with 132 features in RGB color space and reducing
dimensionality to 30 using PCA).

𝐵𝐶𝑄 =
total number of buildings with cool roofs

total number of buildings
(2)
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(a) Noncool roofs for Anand region (b) Noncool roofs for Noida region (c) Non-cool roofs for Hyd region

(d) Second set (e) Cool roofs for Hyd region (f) Cool roofs for TamilNadu region

Fig. 8. Classification results by area. We’ve considered a total of 50 bins in our analysis. Orange denotes predictions indicating cool
areas, while blue signifies predictions indicating non-cool areas. The dataset shows a bias towards smaller areas, encompassing both
cool and non-cool regions across various cities and within individual cities. Hyd represents Hyderabad

This ratio tells us the prevalence of cool roofs among all the buildings in the city. Table 13 shows cool and non-cool roof
prediction for 8 different cities, with their cool/non-cool percentages, total buildings and date of the imagery captured.
Note that for most cities we observe small percentages of cool buildings. In some cities, the cool area percentage is
quite high indicating that the buildings with larger areas are cool. This might be a feature of larger corporates opting to
use cool roofs. We plan to release building-wise coolness in a public dashboard.

5.4 Generalization to different building sizes

The Figure 8 displays classification outcomes for different bins on the area of buildings in meters. Our assessment
utilizes 50 bins on building areas. We observe that our dataset has a bias towards smaller regions. Figure 8(d). This trend
is observable in both cool and non-cool areas within and across cities. In this framework, blue denotes predictions for
cool areas, while orange represents predictions for non-cool areas. Despite the dataset’s bias towards smaller areas, our
model consistently showcases robust generalization capabilities across all categories.

6 FEATURE ANALYSIS - PCA

To justify and understand the hyperparameters used in the classifier, we further investigate the choices through a
number of experiments.

(1) Cumulative Explained Variance: This experiment is used to find the right number of components to be used
for PCA. The cumulative explained variance plot in Figure 9(a) provides insights into how much of the total
variance in our original dataset is retained as we include more principal components. The x-axis represents the
principal components. In this case, it ranges from 1 to 30, indicating the 30 principal components obtained from
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(a) Explained variance of principal components. Therefore we chose dimension-
ality as 30

(b) Feature Influence on Principal Components (c) Correlation among top 30 PCA components

Fig. 9. a) The plot explores how much variance each principal component captures individually and how the cumulative explained
variance increases as we include more components. (b) Feature Influence on Principal Components Features with values close to zero
have minimal influence on the respective component. (c) Correlation among top 30 PCA components

the PCA. The left y-axis represents the explained variance ratio for each individual principal component. Each
bar in the bar plot corresponds to the explained variance ratio of a specific principal component. As we move
along the x-axis (increasing the number of principal components), the cumulative explained variance increases.
The point where the curve starts to flatten or reaches an elbow is crucial. It indicates the number of principal
components needed to capture the majority of the dataset’s variability. The goal is to strike a balance between
reducing dimensionality and retaining enough information to represent the original data adequately. Fewer
principal components mean a more compact representation of the data, but it comes at the cost of losing some
information. We experimented with more than 30 components but best results were achieved at 30 components.

(2) Feature Influence on Principal Components: In this heatmap Figure 9(b) - rows correspond to principal compo-
nents, columns correspond to original features and color intensity represents the magnitude and direction of
the feature contributions. Positive values indicate a positive correlation between the original feature and the
principal component. Negative values indicate a negative correlation. The features represent sparse loading
means that only a few features have significant contributions to a principal component, suggesting that the
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component captures specific patterns not the general patters. The heatmaps shows the discrimination is not
extremely positively or negatively correlated and hence the classification is difficult.

(3) Dominant Features: We got repeated names in the list of dominant features (Table 14) for different principal
components, it suggests that those features are influential across multiple components. Features such as "pan 25
percentile," "red variance," "yellow median," etc., are contributing to the patterns captured by multiple principal
components. These features exhibit a multifaceted influence on the variability in our data, affecting different
aspects captured by different principal components. Almost all the bands are present in domainant features
implying why planet-8 bands work better than Basemaps with 4 bands.

(4) Top-5 features: Table 15 displays the top 5 features for top 3 principal components. Loading represents the weight
or coefficient assigned to each feature in a principal component. It indicates the strength and direction of the
relationship between the original features and the principal component. Positive loadings suggest a positive
relationship, while negative loadings suggest a negative relationship. Contribution percentage represents the
proportion of the total variance in the dataset that is explained by a particular feature in the principal component.
Higher contribution percentages indicate that the corresponding feature has a more significant impact on the
variability captured by the principal component. The sum of contribution percentages across all features in a
principal component adds up to 100%. The loading vector is used to transform the original features into the new
set of principal components.
The contribution of each feature to a principal component is proportional to the square of its loading. Therefore,
features with higher loadings contribute more to the overall variability captured by the principal component. PC1
is mainly formed by positive contributions from features related to the 25th percentile of pan values, median pan
values, and the 25th percentile of yellow values. These features contribute positively to the variability captured
by PC1. PC2 is primarily formed by negative contributions from features related to the variance of rededge values,
the range of red values, and the variance of coastal values. These features contribute negatively to the variability
captured by PC2, suggesting an inverse relationship. PC3 is predominantly formed by positive contributions
from features related to the coefficient of variation in pan, yellow, and rededge values. These features contribute
positively to the variability captured by PC3. Our feature extraction has presence of both positive and negative
loadings in principal components enhances the ability of the model to discern meaningful patterns in the dataset,
making it more effective for classification tasks. It allows the model to consider a broader range of relationships
between features, leading to a more comprehensive understanding of the underlying data structure.

(5) Correlation among top 30 PCA components: Each principal component is a linear combination of all the original
features (in our case, 132 features). The coefficients of this linear combination are determined during the PCA
process. When we select the top 30 principal components and calculate their correlation matrix (Figure 9(c)),
we are examining how these components are related to each other. High Positive Correlations: If we observe
clusters of warmer (reddish) colors, it suggests that the corresponding components are positively correlated.
This indicates that those components tend to move together, capturing similar information. In other words,
these components are redundant in terms of the information they represent. High Negative Correlations: If
we observe clusters of cooler (bluish) colors, it suggests negative correlations between components. Negative
correlations imply that the components capture complementary or opposite information. In this case, each
component might represent different aspects of the data, and they are not redundant. Low Correlations: If we
observe mostly neutral (close to white) or faintly colored cells, it indicates low or no correlation between the
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components. This suggests that the components are relatively independent of each other, meaning they capture
distinct and non-redundant information.

PC Dominant Feature PC Dominant Feature PC Dominant Feature
1 pan_25%tile 11 red_variance 21 yellow_median
2 rededge_variance 12 pan_25%tile 22 rededge_median
3 pan_coeff_var 13 pan_25%tile 23 coastal_25%tile
4 red_75%tile 14 pan_median 24 yellow_median
5 pan_75%tile 15 pan_25%tile 25 rededge_variance
6 pan_minimum 16 red_25%tile 26 pan_coeff_var
7 pan_variance 17 pan_median 27 yellow_median
8 pan_lbp 18 pan_lbp 28 coastal_25%tile
9 red_kurtosis 19 yellow_25%tile 29 pan_entropy
10 red_variance 20 pan_75%tile 30 pan_entropy

Table 14. Dominant Features in Each Principal Component by Magnitude. Almost all the bands are present in domainant features
implying why planet-8 bands work better than Basemaps with 4 bands.

Principal Component Feature Loading Contribution (%)
1 pan_25%tile 0.2416 3.03

pan_median 0.2395 3.00
yellow_25%tile 0.2107 2.64
yellow_median 0.2096 2.63
rededge_25%tile 0.2058 2.58

2 rededge_variance -0.1522 1.62
red_range -0.1477 1.57

coastal_variance -0.1463 1.56
rededge_range -0.1448 1.54
pan_median 0.1434 1.53

3 pan_coeff_var 0.2237 3.16
yellow_coeff_var 0.2108 2.97
rededge_coeff_var 0.2102 2.96
coastal_coeff_var 0.2082 2.94
nir_coeff_var 0.2002 2.82

Table 15. Top 5 Features for top 3 Principal Components. Columns starting from left: Component number, the name of the feature,
the weight assigned to the feature in the principal component and the percentage of the total variance explained by the given feature
in the principal component.

7 DASHBOARD DESIGN

We designed our dashboard using open source tools in Python. We used the mapping library leafmap Wu et. al. [35] in
the solara framework [5] to enable interaction. For rendering all polygons of a city together, we used deckGL [3] along
with Duckdb [6] for reading parquet files. Further, we will be integrating this with a PostGIS database [25] for fetching
polygons on demand while zooming in. We’re showcasing the outcomes for Hyderabad on the dashboard. Figure 1 and
Figure 10 show dashboard images. Figure 10a is an example region from Hyderabad, the upper part is non-cool while
the lower cluster is of cool roofs. Our model can accurately tell the difference even when it’s challenging for the naked
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(a) (b)

Fig. 10. Cool roof tracker - Dashboard. (a) region in Hyderabad, the upper part is non-cool while the lower cluster is of cool roofs. (b)
Predictions for the entire city of Hyderabad. The red clusters represent cool areas, while the green clusters represent non-cool areas.

eye, and it works well with small buildings. In Figure 10b the red clusters represent cool areas, while the green clusters
represent non-cool areas. This figure predicts the entire city of Hyderabad.

8 CONCLUSION AND FUTUREWORK

We presented a scalable and accurate tracker for cool roofs which can work purely through satellite images. This
tool combines satellite images and machine learning models. We evaluate eight major cities with our system, with
performance outlined in our paper. Our approach involves analyzing satellite data such as PlanetScope images, Planet
Basemaps and Sentinel images, extracting features, and employing various machine learning models for classification.
Our experiments suggest that PlanetScope imagery is more effective than Sentinel and Planet Basemaps for classification.
Our most successful model utilizes MLP with RGB color space, extracting 132 features and applying PCA to reduce
dimensionality to 30. Our work also involves a comprehensive analysis of the extracted features, along with providing
the rationale behind why we chose to extract each particular feature. We compared our method to the Albedo extraction
method, where we calculated albedo from Landsat8 images and trained regression between Planet images and extracted
albedo values. Our results indicate that our model outperforms this method. We also qualitatively evaluated different
methods for extracting buildings from images, finding that OpenBuildings performs the best, despite some offset issues
that need addressing in future research. Although our model is tailored for Indian cities, it would be interesting to
assess its performance on roofs in other countries. Our dataset mainly comprises smaller roofs, yet our method shows
adaptability with the existing data. Future efforts will involve acquiring additional data encompassing various roof
sizes and conducting quantitative analysis of our model’s performance.

We’ve developed a prototype dashboard to support data-driven decision-making at various levels: city, sub-city (pin
code), and individual building. This dashboard serves as a valuable tool for policymakers, offering insights into urban
heat clusters and the extent of cool areas. By visualizing data on urban heat clusters and cool areas, policymakers can
make informed decisions to address heat mitigation strategies effectively. Our future works also include to enable public
feedback on the dashboard and use aggregated data to further improve models since the current number of ground
truth samples were limited. Additionally, incorporating unlabeled data to enhance our model’s reliability and generality,
ensuring wider applicability. To deepen our understanding, we plan to gather more domain knowledge, investigating if
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seasonal changes impact roof reflectivity and incorporating these findings into our system. Temporal analysis will be
an important aspect of our future work, providing insights into how roof conditions evolve over time. Currently the
data has less than 3% of cloud coverage, we aim to assess our model’s performance in different cloud coverage and
other weather conditions.

In terms of effectiveness, future work can be, investigating reflectivity on different cool roof materials and how to
incorporate it in model. Also to see how cool roofs connect with things like the Urban Heat Island (UHI) effect and how
much people pay for energy. Geospatial analysis can be utilized to understand the distribution of cool and non-cool
roofs on a map, potentially revealing geographical patterns.
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