Development S

-
tr(modifier 0

. t=90
Wlt selected ob»

e.name].seM

DR ANUPAM SOBTI
PLAKSHA UNIVERSITY




Why this course?

« Barriers to code (of all types) are reducing

* Infinite demand for software automation

* Need to build software quickly with the best
tools available and SELL!

« LLMs are a tool to understand the best
available methods and generate software.
 Let's try to learn how to use it best!

@ Andrew Ng &

Despite having worked on Al since | was a teenager,
I’m now more excited than ever about what we can
do with it, especially in building Al applications.
Sparks are flying in our field, and 2025 will be a great
year for building!

One aspect of Al that I’'m particularly excited about is
how easy it is to build software prototypes. Al is
lowering the cost of software development and
expanding the set of possible applications. While it
can help extend or maintain large software systems,
it shines particularly in building prototypes and other
simple applications quickly.

@ Naval &

=7 There is infinite demand for computer programs.




Course Philosophy and Approach

Menu card approach

o Know your options. Explore more when required.
LLMs to mimic (expert) human behavior at a workflow level

Use flexible approaches

o With respect to models

> With respect to products, e.g., don’t depend too much on Cursor/VS Code.




What are we
going to do?

Lect.

10

11

12

13

14

15

Topic

WTH is web?

What's possible in web?

Prompting LLMs

Expanding web users
Prompting in context

FastHTML/FastAPI

FastHTML - Il

Database design basics

Stitching databases with
frontend

Beyond databases

Using reasoning models -
o1, gemini 2.0

RAG

Agentic RAG

Multi agent systems

Using memory with LLMs

Details

HTML/Styling/Interactivity - JS; Bootstrap, Tailwind, React, Vue, D3.js,
Chart.js

Library usage examples

Single shot prompting, Editing with prompts, Maintaining context

Responsive Design, Web Sockets, Hooks
Multi-file editing with prompts, Sharing documentation with LLMs

Basics, HTMX, async workflows, DB integration

Websockets, Authentication

User management, DB operations, atomicity, etc. Prompting for DB
design.

Prompts for integrating DBs with web pages

Handling large data, caching

Reason before you respond. Hybrid use of models.

Vector embeddings, Retreiving content, Handling large data, Establish
Causation

Adding helpers to your RAG pipelines

The benefit of having multi-role agents and orchestrating workflows in
between agents

How to orchestrate memory, what to retreive for context, what kind of
context is good context, scratchpadding



Evaluation

Lab
presentations (6) 70%

Demo day 20%

Attendance and
class
participation 10%

The lab presentations would be
updates on things you've tried
towards your project from the
lecture and its effect on your
course project.

Please read papers/watch youtube
to see if people have tried similar
things that you are trying to do.
How did they phrase their
prompts? What problems did they
encounter?

More than 80% = 10 marks (full)
70 to 80 % = 8 marks

60 to 70 % = 6 marks

Less than 60 % = 0 marks

There will be 3 star presentations declared every 2 weeks. If you get
more than 3 stars, you get a grade bump.



Recommended read for when prompting isn't
enough

https://developer.mozilla.org/en-US/docs/Learn web development



https://developer.mozilla.org/en-US/docs/Learn_web_development
https://developer.mozilla.org/en-US/docs/Learn_web_development
https://developer.mozilla.org/en-US/docs/Learn_web_development

HTML - HyperText Markup Language
(latest version 5) [2014 onwards]

- Inbuilt support for multiple modalities like
<audio>, <video>, <track>

Wh at a re - More structure for text, e.g., <header>, <footer>,
- <article>, <section>, <aside>, <figure>,
WEbSlteS? <figcaption> etc.

Some basic
terminologies

- Enhanced forms
- Scriptable graphics
- LocalStorage/SessionStorage

- Improved scripting and APls: websockets, web
workers (background js)




Programmatic access to a document

(html/xml): DOM

From Wikipedia, the free encyclopedia

The Document Object Model (DOM) is a cross-platform and language-independent
interface that treats an HTML or XML document as a tree structure wherein each node
is an object representing a part of the document. The DOM represents a document with
a logical tree. Each branch of the tree ends in a node, and each node contains objects.
DOM methods allow programmatic access to the tree; with them one can change the
structure, style or content of a document.l?! Nodes can have event handlers (also known
as event listeners) attached to them. Once an event is triggered, the event handlers get
executed.®!

The principal standardization of the DOM was handled by the World Wide Web
Consortium (W3C), which last developed a recommendation in 2004. WHATWG took
over the development of the standard, publishing it as a living document. The W3C now
publishes stable snapshots of the WHATWG standard.

In HTML DOM (Document Object Model), every element is a node:!*]

¢ A document is a document node.

* All HTML elements are element nodes.

¢ All HTML attributes are attribute nodes.

Text inserted into HTML elements are text nodes.

» Comments are comment nodes.

document

Document Object Model

Root element:
<html>

Element:
<head>
Element:
<title>
Text:
"My title"

Element:
<h1>

Text:

"A heading"

Element:
<body>

<

a>
Text:
"Link text"

https://developer.mozilla.org/en-US/docs/\Web/API/Document_Object_Model/Introduction

Element: Attribute:

href




Things that allow dynamic
Interactions/content, e.g., mouse hovers,
scroll, etc.

Wh at a re - JavaScript (JS), TypeScript (superset

compiled to JS), WASM (Web Assembly

SC rl ptS? for running Go/Rust in the browser)

Executable JS code (could be client or
server side but mostly client side)



Cascading Style Sheets (CSS)
- Style fixed for elements

- or rendered at load time on the server side (SSR - server
side rendering)

Styling
Content Famous:

- https://ui.shadcn.com/

- https://tailwindcss.com/

- https://m3.material.io/styles/color/system/overview

https://playcode.io/css


https://ui.shadcn.com/
https://tailwindcss.com/
https://m3.material.io/styles/color/system/overview
https://m3.material.io/styles/color/system/overview

Margin

https://developer.mozilla.org/en-US/docs/Web/CSS/margin
Margin

CSS Demo: margin RESET

margin: lem;

Padding

margin: 5% @;

' _
Content

margin: 1@px 5@px 2@px 0;

margin: @;

https://www.w3schools.com/css/css_boxmodel.asp



(3 Copy code

inventory = [

r

totalValue = 0;

u
item inventory) {
itemValue = item.quantity * item.price; a SI C S

(

totalValue += itemValue;

, totalValue);




<!DOCTYPE
<html

<head>
<title>JavaScript Events Example</title>

</head>

<body>
<button >Click Me</button>

<p = ></p>
<script>

button =
message =

() {

message.textContent =

button. , handleClick);

</script>

</body> $
</html>

(P Copy code

Events In
JS




DO: Let's make something?

+ & Vv

A basic website for Adding interactions. Code for different Responsive designs
this course’s (your types of events:
project’s) information. onClick, onHover



DO: Using variables for interactions

= &

TRY TO MAKE SOME STORE THE STATE IN JS.
SECTIONS COLLAPSIBLE.




DO: Let's make different layouts and styles

O -

Try three different styles and Check them for Add 3 types of interaction
layouts for your website responsiveness on three through js
different devices



Some layout frameworks

CSS Frameworks

Component Libraries

. Bootstrap

. Material-Ul (MUI)

. Ant Design . Tailwind CSS

. Chakra Ul . Bulma

. React Bootstrap . Foundation

. Vuetify . Materialize

. PrimeReact | PrimeVue . Skeleton

. Blueprint . Pure CSS

Super lightweight: Pico.css



DO: Let's make multipage apps

COMMON CODE FOR USE SCRIPTS TO
HEADER, FOOTER INCLUDE ON ALL PAGES




Responsive Design

The term responsive design, coined by Ethan Marcotte in 2010, described using fluid grids, fluid
images, and media queries to create responsive content.

https://developer.mozilla.org/en-
US/docs/Learn_web_development/Core/CSS_layout/Responsive_Design

https://developer.mozilla.org/en-
US/docs/Learn_web_development/Core/CSS_layout/Media_queries Flexbox model


https://alistapart.com/article/responsive-web-design/

Understanding FlexBox

. flex-container {
display: flex;
flex—-direction: column;

<div class="flex—container"> }
<div>1</div> Result:
<div=>2</div>
<div=>3</div>

</div>

e flex-direction
o flex-wrap

o flex-flow

e justify-content
e align-items

e align-content

https://www.w3schools.com/css/css3_flexbox.asp



Flexbox example

and (min-width:

: flex;

See what happens if you
make the browser
window wider or narrow.

This layout is responsive.

B Play

<» Play

One November night in the year 1782, so the story
runs, two brothers sat over their winter fire in the
little French town of Annonay, watching the grey
smoke-wreaths from the hearth curl up the wide
chimney. Their names were Stephen and Joseph
Montgolfier, they were papermakers by trade, and
were noted as possessing thoughtful minds and a
deep interest in all scientific knowledge and new
discovery.

Before that night—a memorable night, as it was to
prove—hundreds of millions of people had watched
the rising smoke-wreaths of their fires without
drawing any special inspiration from the fact.




Media Queries

CSS

@media screen and (min—-width: 80rem) {

.container {

margin: lem 2em;

Screen-size/Viewport size dependent css



CSs

body {

font: 1.2em / 1.5 sans-serif;

Do you need a

list-style: none;

media query?

padding: @;

display: grid;

gap: 20px;

grid-template—columns: repeat(auto-fill, minmax(20@0px, 1fr));
Always prefer flexbox/css T
grid solutions since these e

.grid 1i {

are more general border: 1px solid #666;

i padding: 1@px;
solutions! }




Styling images

https://www.w3schools.com/css/css3 images.asp

Guess what this does?

// Get the modal
var medal = document.getElementById( 'myModal');

// Get the image and insert it inside the modal - use its "alt" text as a caption
var img = document.getElementById( 'myImg');
var modalImg = document.getElementById("img@1");
var captionText = document.getElementById("caption");
img.onclick = function(){
modal.style.display = "block";
modalImg.src = this.src;
captionText.innerHTML = this.alt;
}

Example

Rounded Image: // Get the <span> element that closes the modal

var span = document.getElementsByClassName("close") [0];

img { - // When the user clicks on <span> (x), close the modal
border-radius: 8px; Clnque Terre span.onclick = function() {
} modal.style.display = "none";

}



https://www.w3schools.com/css/css3_images.asp

Frameworks




Common frameworks

React

Vue.js

Next.js




\What do these bring to the table?

Large number of interactions in a component style

Good to use when highly functional SPAs (single page applications) are required




Reflections from last class
Guestlecture by Archit

My two cents.

If you're imagining screens which are largely interactive:
o Next js based app

If you're imagining screens which are largely static with interactive components:
o HTMX + Static site generator (Eleventy)

If you're imagining screens with complex visualizations and custom interactions:

o Stick to raw html/css/js



Prompting like a pro




OpenAl




Services

DESCRIPTION

Our versatile, high-intelligence flagship model

Our fast, affordable small model for focused tasks

Reasoning models that excel at complex, multi-step tasks

GPT-40 models capable of realtime text and audio inputs and outputs

GPT-40 models capable of audio inputs and outputs via REST API

The previous set of high-intelligence models

A fast model for simple tasks, superceded by GPT-40-mini

A model that can generate and edit images given a natural language prompt

A set of models that can convert text into natural sounding spoken audio

A model that can convert audio into text

Structured Outputs

Ensure model responses adhere to
your supplied JSON schema

£

"name": "math_response",
Tstrict™: true,
"schema": {

"type": "object",

"properties": {

"steps": {
"type": "array",

Async use cases

Batch requests for async, large-scale
processing

batch_joiYCmvQuzpK

@® Status Completed

Endpoint /v1/chat/completio

@ Completiontime 24h
b
N

Request counts 497 completed, O failed

Realtime API

Build low-latency multimodal
experiences

User
Can | order two americanos
and a chocolate donut?

Fine-tuning >

Adapt a model to your specific use
case with your data

Step 568
W Trainingloss  0.0302
Validation loss 0.02

Assistants API

Build conversational assistants with
tools and File Search

File Search

AG tool to pr

Code Interpreter

Function Calling

Distillation

Evaluate and fine-tune models using
production logs

ol-preview 90% gpt-do-mini 86%

Grammar Syntax Spelling




Prompting

Create a human-like response to a prompt

openai OpenAl
client = OpenAI()

completion = client.chat.completions.create(
model= ,
messages=[
{
{

print(completion.choices[0].message)

Generate an image based on a textual prompt

openai OpenAI
client = OpenAI()

response = client.images.generate(
prompt=

print(response.datal[0].url)



Strategies for prompting

Writing Clear Instructions

* Include details in your query to get more relevant answers

* Ask the model to adopt a persona

e Use delimiters to clearly indicate distinct parts of the input

ann

. or <article></article> or even Santa: Banta:
* Explain task to the “system”

* Specify the steps required to complete a task

*Provide examples (Few shot prompting)

*Specify the desired length of the output

Write clear instructions

Provide reference text

Split complex tasks into
simpler subtasks

Give the model time
to "think"

Use external tools

Test changes
systematically

Other resources



https://platform.openai.com/docs/guides/prompt-engineering#tactic-include-details-in-your-query-to-get-more-relevant-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-include-details-in-your-query-to-get-more-relevant-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-include-details-in-your-query-to-get-more-relevant-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering#tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-delimiters-to-clearly-indicate-distinct-parts-of-the-input
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-delimiters-to-clearly-indicate-distinct-parts-of-the-input
https://platform.openai.com/docs/guides/prompt-engineering#tactic-specify-the-steps-required-to-complete-a-task
https://platform.openai.com/docs/guides/prompt-engineering#tactic-specify-the-steps-required-to-complete-a-task
https://platform.openai.com/docs/guides/prompt-engineering#tactic-provide-examples
https://platform.openai.com/docs/guides/prompt-engineering#tactic-provide-examples
https://platform.openai.com/docs/guides/prompt-engineering#tactic-specify-the-desired-length-of-the-output
https://platform.openai.com/docs/guides/prompt-engineering#tactic-specify-the-desired-length-of-the-output

Providing reference text

*Instruct the model to answer using a reference text

* Use embeddings when text is too big

e|nstruct the model to answer with citations from a reference text

SYSTEM You will be provided with a document delimited by triple quotes and a
question. Your task is to answer the question using only the provided
document and to cite the passage(s) of the document used to answer the
question. If the document does not contain the information needed to
answer this question then simply write: "Insufficient information." If an
answer to the question is provided, it must be annotated with a citation. Use

the following format for to cite relevant passages ({"citation": ...}).

""<insert document here>""

Question: <insert question here>



https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-answer-using-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-answer-using-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-answer-with-citations-from-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-answer-with-citations-from-a-reference-text

Split complex tasks into simpler subtasks

*Use intent classification to identify the most relevant instructions for a user query

*For dialogue applications that require very long conversations, summarize or filter previous dialogue

* Think of it as note taking

eSummarize long documents piecewise and construct a full summary recursively



https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-intent-classification-to-identify-the-most-relevant-instructions-for-a-user-query
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-intent-classification-to-identify-the-most-relevant-instructions-for-a-user-query
https://platform.openai.com/docs/guides/prompt-engineering#tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue
https://platform.openai.com/docs/guides/prompt-engineering#tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue
https://platform.openai.com/docs/guides/prompt-engineering#tactic-summarize-long-documents-piecewise-and-construct-a-full-summary-recursively
https://platform.openai.com/docs/guides/prompt-engineering#tactic-summarize-long-documents-piecewise-and-construct-a-full-summary-recursively

Give the model time to "think"

* Instruct the model to work out its own solution before rushing to a conclusion

e Use inner monologue or a sequence of queries to hide the model's reasoning process

e Ask the model if it missed anything on previous passes



https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-work-out-its-own-solution-before-rushing-to-a-conclusion
https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-work-out-its-own-solution-before-rushing-to-a-conclusion
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-inner-monologue-or-a-sequence-of-queries-to-hide-the-model-s-reasoning-process
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-inner-monologue-or-a-sequence-of-queries-to-hide-the-model-s-reasoning-process
https://platform.openai.com/docs/guides/prompt-engineering#tactic-ask-the-model-if-it-missed-anything-on-previous-passes
https://platform.openai.com/docs/guides/prompt-engineering#tactic-ask-the-model-if-it-missed-anything-on-previous-passes

Use tools

*Use embeddings-based search to implement efficient knowledge retrieval

*Use code execution to perform more accurate calculations or call external APls

e Use for visualizations and dashboards

*Give the model access to specific functions



https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-code-execution-to-perform-more-accurate-calculations-or-call-external-apis
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-code-execution-to-perform-more-accurate-calculations-or-call-external-apis
https://platform.openai.com/docs/guides/prompt-engineering#tactic-give-the-model-access-to-specific-functions
https://platform.openai.com/docs/guides/prompt-engineering#tactic-give-the-model-access-to-specific-functions

Test changes systematically

*Evaluate model outputs with reference to gold-standard answers



https://platform.openai.com/docs/guides/prompt-engineering#tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers

More from OpenAl

https://cookbook.openai.com/

Prompting libraries & tools

*Prompting guides

*Video courses

*Papers on advanced prompting to improve reasoning



https://cookbook.openai.com/
https://cookbook.openai.com/related_resources#prompting-libraries--tools
https://cookbook.openai.com/related_resources#prompting-libraries--tools
https://cookbook.openai.com/related_resources#prompting-guides
https://cookbook.openai.com/related_resources#prompting-guides
https://cookbook.openai.com/related_resources#video-courses
https://cookbook.openai.com/related_resources#video-courses
https://cookbook.openai.com/related_resources#papers-on-advanced-prompting-to-improve-reasoning
https://cookbook.openai.com/related_resources#papers-on-advanced-prompting-to-improve-reasoning

Gemin




Services

Model variant

Gemini 2.0 Flash
gemini-2.8-
flash-exp

Gemini 1.5 Flash
gemini-1.5-
flash

Gemini 1.5 Flash-8B
gemini-1.5-
flash-8b

Gemini 1.5 Pro
gemini-1.5-pro

Gemini 1.0 Pro
gemini-1.8-pro
(Deprecated on
2/15/2025)

Text Embedding
text-embedding-
004

AQA
aqa

Input(s)

Audio, images,
videos, and text

Audio, images,
videos, and text

Audio, images,
videos, and text

Audio, images,
videos, and text

Text

Text

Text

Output

Text, images (coming scon), and

audio (coming soon)

Text

Text

Text

Text

Text embeddings

Text

Optimized for

Next generation features, speed, and multimodal
generation for a diverse variety of tasks

Fast and versatile performance across a diverse
variety of tasks

High volume and lower intelligence tasks

Complex reasoning tasks requiring more
intelligence

Natural language tasks, multi-turn text and code
chat, and code generation

Measuring the relatedness of text strings

Providing source-grounded answers to questions

Explore long context

Input millions of tokens to Gemini models and derive understanding from
unstructured images, videos, and documents.

Solve tasks with fine-tuning

Modify the behavior of Gemini models to adapt to specific tasks, recognize
data, and solve problems. Tune models with your own data to make production
deployments more robust and reliable.

Generate structured outputs

Constrain Gemini to respond with JSON, a structured data format suitable for
automated processing.




Basic usage

€ D
import google.generativeai as genai
import PIL.Image

genai.configure(api_key="GEMINI_API_KEY")

model = genai.GenerativeModel("gemini-1.5-flash")

organ = PIL.Image.open("/path/to/organ.png")

response = model.generate_content(["Tell me about this instrument", organ])
print(response.text)



Strategies for prompting

Clear and Specific instructions Give clear and specific instructions

o Define task clearly, in steps if required Include few-shot examples

Add contextual information

o Specify constraints

o Define format Add prefixes

Let the model complete partial input




Include Few-shot Examples

Experiment with number of examples

Include patterns, not antipatterns

Use consistent formatting in examples




Adding contextual information

*Include information (context) in the prompt that you want the model to use when generating a response.

» Specially useful when using tools

*Give the model instructions on how to use the contextual information.




Add prefixes

Input, e.g., ARTICLE:

Output, e.g., JSON:

Include examples




Let the model complete partial output

*If you give the model a partial input, the model completes that input based on any available examples or
context in the prompt.

*Having the model complete an input may sometimes be easier than describing the task in natural
language.

*Adding a partial answer to a prompt can guide the model to follow a desired pattern or format.




Break down prompts into simple components

Break down instructions
o Separate out major “functions” and use different prompts for each function

Chain prompts, e.g., running steps one after the other to ensure intermediate output

Aggregate results, e.g., going through your codebase




Different parameter values

Max output tokens

Temperature

o Higher the temperate, more creative

Top-K

o Sampling during generation

Top-P

o Tokens are selected from the most (see top-K) to least probable until the sum of their probabilities equals the top-P value.

o iftokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-P value is 0.5, then the model will select either A or B

as the next token by using temperature and excludes C as a candidate.



lterating on prompts

Use different paraphrasing
Switch to analogous tasks

Change order of prompt content

Version 1:
[examples]
[context]

[input]

Version 2:
[input]
[examples]
[context]

Version 3:
[examples]
[input]
[context]



Prompting with files

* Prompt design fundamentals

. Be specificin your instructions: Craft clear and concise instructions that leave minimal room for misinterpretation.

. Add a few examples to your prompt: Use realistic few-shot examples to illustrate what you want to achieve.

. Break it down step-by-step: Divide complex tasks into manageable sub-goals, guiding the model through the process.

. Specify the output format: In your prompt, ask for the output to be in the format you want, like markdown, JSON, HTML and more.

. Put your image first for single-image prompts: While Gemini can handle image and text inputs in any order, for prompts containing a single image, it might perform better if that
image is placed before the text prompt.

e Troubleshooting your multimodal prompt

. If the model is not drawing information from the relevant part of the image: Drop hints with which aspects of the image you want the prompt to draw information from.

. If the model output is too generic (not tailored enough to the image): At the start of the prompt, try asking the model to describe the image(s) before providing the task
instruction, or try asking the model to refer to what's in the image.



https://ai.google.dev/gemini-api/docs/file-prompting-strategies#fundamentals
https://ai.google.dev/gemini-api/docs/file-prompting-strategies#fundamentals
https://ai.google.dev/gemini-api/docs/file-prompting-strategies#troubleshooting
https://ai.google.dev/gemini-api/docs/file-prompting-strategies#troubleshooting

Claude




Key capabilities

claude_quickstart.py

t anthropic

Key capabilities

client = anthropic.Anthropic()

Claude can assist with many tasks that involve text, code, and images. nessage = client.messages.create(

model="claude
max_tokens=1000,
m temperature=0,
system="You are world-c t. Respond only with short poems.",
Text and code generation Vision messages=[
Summarize text, answer questions, Process and analyze visual input and
extract data, translate text, and explain generate text and code from images.

and generate code.

rint(message.content)




Before you prompt

Set a good goal + Task fidelity

o https://docs.anthropic.com/en/docs/build-with-

» Consistency

claude/define-success

» Relevance and coherence
o Specific
» Tone and style

o Measurable

» Privacy preservation

o Achievable

» Context utilization

o Relevant
» Latency
~ Example task fidelity criteria for sentiment analysis
» Price
Criteria
Bad  The model should classify sentiments well Most use cases will need multidimensional evaluation along several success criteria.

Good Our sentiment analysis model should achieve an F1 score of at least 0.85 (Measurable, Specific)
on a held-out test set* 0f 10,000 diverse Twitter posts (Relevant), which is a 5% improvement
over our current baseline (Achievable).

» Example multidimensional criteria for sentiment analysis



https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success

Create evals

Develop test Engineer Test prompt Refine Test against Ship polished
cases preliminary against cases prompt held-out evals prompt
prompt
p— D
—_— o0 0
)
Don’t forget edge cases! EVALS!

e.g., in limited types of interactions within your website or retrieving data from the DB



Levels of tests

Eval design principles

1. Betask-specific: Design evals that mirror your real-world task distribution. Don’t forget to

factor in edge cases!

» Example edge cases

2. Automate when possible: Structure questions to allow for automated grading (e.g.,

multiple-choice, string match, code-graded, LLM-graded).

3. Prioritize volume over quality: More questions with slightly lower signal automated

grading is better than fewer questions with high-quality human hand-graded evals.



How to prompt Claude?

1.Prompt generator

2.Be clear and direct

3.Use examples (multishot)

4.Let Claude think (chain of thought)

5.Use XML tags

6.Give Claude a role (system prompts)

7.Prefill Claude’s response

8.Chain complex prompts

9.Long context tips



https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prompt-generator
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prompt-generator
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/be-clear-and-direct
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/be-clear-and-direct
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/system-prompts
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/system-prompts
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/long-context-tips
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/long-context-tips

Clear and direct prompts

Give contextual information
o Where is this going to be used?

o Who is the audience?

Be specific about what you want Claude to do

Provide instructions as sequential steps




Prompt to think

Basic: Think step-by-step
Intermediate: Outline steps

The notes approach: Use tags <thinking> <answer>.

o Additionally, use summarization on thinking

o Add other elements like absorbing PDFs or notes




System prompts

You are a X. You provide the service Y to the firm Z.




Prefill responses

~ Example: Structured data extraction without prefilling ~ Example: Structured data extraction with prefilling

Role Content
Role Content
User Extract the name, size, price, and color from this product description as a JSON object:
User Extract the name, size, price, and color from this product description as a JSON
<description> object:
The SmartHome Mini is a compact smart home assistant available in black or white for
only $49.99. Atjust 5 inches wide, it lets you control lights, thermostats, and other <description>

connected devices via voice or app—no matter where you place it in your home. This

. . . . ) ) The SmartHome Mini is a compact smart home assistant available in black or white
affordable little hub brings convenient hands-free control to your smart devices.

for only $49.99. At just 5 inches wide, it lets you control lights, thermostats, and other

s/description> connected devices via voice or app—no matter where you place it in your home. This
Assistant Here’s the extracted information in JSON format: affordable little hub brings convenient hands-free control to your smart devices.

</description>

**json

{ Assistant {

“name”: “SmartHome Mini”, (prefill)

“size”: “5 inches wide”,

“price”: “$49.99”, Assistant “name”: “SmartHome Mini”,

“colors™: [“black”, “white”] (Claude’s “size”: “5 inches wide”,

} response) “price”: “$49.99”,

o “colors”: [
“black”,

I've extracted the following details from the product description: “white”

- Name: SmartHome Mini ]

- Size: 5 inches wide )

- Price: $49.99
- Colors: Available in black and white




Chain it up

1.l1dentify subtasks: Break your task into

distinct, sequential steps. Example chained workflows:

*Multi-step analysis: See the legal and business
examples below.
*Content creation pipelines: Research - Outline -

2.Structure with XML for clear handoffs:
Use XML tags to pass outputs between

prompts. Draft - Edit - Format.
*Data processing: Extract - Transform - Analyze -
3.Have a single-task goal: Each subtask Visualize.
should have a single, clear objective. *Decision-making: Gather info - List options -
Analyze each - Recommend.
4.Iterate: Refine subtasks based on Claude’s *Verification loops: Generate content - Review >
performance. Refine - Re-review.



Long prompts

Keep queries at the end (30% improvement in response)

Structure each document and metadata with XML

Add quoting capabilities with explicit indexing




DO: Make screens for your web app

Let’s think through
> the kind of things our users require,
o the amount of reactivity required,

o source/destination for data

o Look/feel for the app




DO: Generate each screen using an AP|

Let’'s do Ollama APIs this time

Try two models, may be
> a phi3 and

o a deepseek-r1/llama 3.2




Managing data

DATABASES

https://support.microsoft.com/en-us/office/database-design-basics-eb2159c¢f-1e30-401a-8084-bd4f9¢c9ca1fb



https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5

What are databases?

Which excel sheets would this person
maintain?

What information will | require for my
screens?

DB -> Table -> Record -> Field

=
ProductID -~ Product Name - Supplier =
L=

+ 1 Chai Exotic Liquids

+ 2 Chang Exotic Liquids
—
| Re
: Company Name - Contact Nan ~
(=]
+ Alfreds Futterkiste Maria Anders
+| Ana Trujillo Emparedados y helados Ana Trujillo
=4 Orders -
Order ID ~ Customer - Employee ~
[ &)
+ 10248 Wilman Kala _~| Buchanan, Ste
+ 10249 Tradicdo Hipermercados Suyama, Mich
+ 10250 Hanari Carnes Peacock, Marg -
(Record: M < 10f830 » M b | § | Search




Good DB Design

A good database design is, therefore, one that:

[e]

Divides your information into subject-based tables to reduce redundant data.

[e]

Provides Access with the information it requires to join the information in the tables together as
needed.

[e]

Helps support and ensure the accuracy and integrity of your information.

[e]

Accommodates your data processing and reporting needs.




Designing your DB: The process

Determine the purpose of your database
Find and organize the information required
Divide the information into tables

Turn information items into columns
Specify primary keys

Set up the table relationships

Refine your design

Apply the normalization rules



The purpose

Number of users
> |s the user a single machine

o Or distributed machines that could work parallely? DB on server

What will you do with the data?
- Which reports to be generated
o What type of user interactions are required?

o What kind of questions will you need to answer later, e.g., which regions provide the best revenue?



Gathering information

For each type of information, think of

o What field would you keep if you give them a paper form, e.g., a customer

> From your screen, what would you display for different components of the screen




Dividing information into tables

TINF: 1st Normal Form (Atomicity)

Student_ID Name Courses Student_ID Course

1 Alice Math, Science Math

2 Bob History Science

History

A table is in 1NF if:

1. Each column contains
atomic (indivisible)
values (no lists, arrays,
or nested values).

2. Each column contains
values of a single type.

3. Each row has a
unique identifier
(Primary Key).




2NF: No partial dependencies

A table is in 2NF if:
1. ltisin 1NF.

2. All non-key attributes must depend on the entire
primary key, not just a part of it.

Student_ID Course_ID Student_Name Course_Name

1 101 Alice Math

2 102 Bob Science

Student Name depends on
Student_ID and Course_Name
depends on Course ID

Students Table:

Student_ID Student_Name

1 Alice

2 Bob

Courses Table:

Course_ID Course_Name
101 Math

102 Science

|| Student_Courses (Joining Table):

Student_ID Course_ID
101

102




3NF: No transitive dependencies

A table is in 3NF if:

1. It is in 2NF.

2. All non-key attributes depend only on the
primary key (no indirect dependencies).

Student_ID

Student_Name
1 Alice

2 Bob

Course_ID Course_Name Instructor

101 Math Dr. Smith

102 Science Dr. Jones

Here, Course_Name and Instructor
depend on Course_ID, not Student_ID,
creating a transitive dependency.

Courses Table:

Course_ID Course_Name
101 Math

102 Science

Student_Courses Table:

Student_ID Course_ID
1 101

2

Instructor
Dr. Smith

Dr. Jones




BCNF: Boyce Codd Normal Form

BCNF is a stricter version of 3NF. A table is in BCNF if:

Courses Table:

Course Department

1. It isin 3NF.
Math Science

2. Every determinant is a candidate key. History  Arts

Professors Table:

Professor Department

Professor Course
Dr. Smith Science _
Dr. Smith Math

Dr. Jones Arts Dr. Jones History

Here, Professor — Course, but
Course — Department. This
means Course should be a
primary key.




4th NF: No multi-valued dependencies

A table is in 4NF if: Course_Instructors Table:

.. Course Instructor
1. Itisin BCNF.

Math Dr. Smith

2. No column contains two or more independent multi-valued facts.
Math Dr. Brown

Course_Books Table:

Course Instructor Book

Math Dr. Smith Algebra 101 Course | Book

Instructor and

book are
Math Dr. Brown  Algebra 101 ind epen dent Math Geometry 202

Math Algebra 101

Math Dr. Smith Geometry 202




When to Stop
Normalizing?

e 3NF is sufficient for most
practical applications.

®* BCNF is used in complex
enterprise applications.

* ANF and bNF are used in
advanced use cases like
data warehouses.

Normal Form

INF

Rule

No repeating groups or multi-valued
attributes

No partial dependencies (all attributes

depend on the whole primary key)

No transitive dependencies (only depends on
primary key)

Every determinant is a candidate key
No multi-valued dependencies

No join dependencies




Recap from guest lecture:

Designing your DB

Start with Content

Create a data model

- Break down content model
into objects

- Define properties and types

- Map Object relationships

Wanted: A Senior Web Developer m

We are looking for a senior level web developer (with around 5-7 years of experience) to help us continue

making great websites. This is a remote position. You may be located anywhere in India or the rest of the world

(with at least a 4-hour time overlap with the Indian timezone).
Description

This is a full-time position

We work remotely

Experience required: 5-7 years

Typical compensation is Rs. 15L per annum







Making requests

WHAT IS A REST API?

CLIENT SERVER
o = G
—> —
GET /
POST Jeurveys/123 T
DELETE /surveys/123/resp ...
PUT
N P

=

{
survey_id: 123,
score: 9,
message: "amaze..",
response_id: 4

Source: https:/medium.com/@shikha.ritu17/rest-api-architecture-6f1c3¢99f0d3




Let’'s see a quick demo

Todo List APl Demo

Add New Todo U

Enter new todo Add Todo

Update Todo

Todo ID New text Update Todo

Delete Todo



@ FastAP]

FastAPl is a modern, fast (high-performance), web framework for building APIs with
Python based on standard Python type hints.

The key features are:
*Fast: Very high performance, on par with NodeJS and Go (thanks to Starlette and

Pydantic). One of the fastest Python frameworks available.

*Fast to code: Increase the speed to develop features by about 200% to 300%. *
*Fewer bugs: Reduce about 40% of human (developer) induced errors. *

sIntuitive: Great editor support. Completion everywhere. Less time debugging.

*Easy: Designed to be easy to use and learn. Less time reading docs.

*Short: Minimize code duplication. Multiple features from each parameter declaration.
Fewer bugs.

*Robust: Get production-ready code. With automatic interactive documentation.
*Standards-based: Based on (and fully compatible with) the open standards for

APls: OpenAPI (previously known as Swagger) and JSON Schema.



https://fastapi.tiangolo.com/#performance
https://github.com/OAI/OpenAPI-Specification
https://json-schema.org/

Typing hints for FastAPI

With FastAPI you declare parameters with type hints and you get:
- Editor support.
* Type checks.
...and FastAPI uses the same declarations to:
- Define requirements: from request path parameters, query parameters, headers, bodies, dependencies, etc.
- Convert data: from the request to the required type.

*Validate data: coming from each request:
* Generating automatic errors returned to the client when the data s invalid.

* Document the API using OpenAPI:
* which is then used by the automatic interactive documentation user interfaces.



The basic app

Route
from fastapi import FastAPI
p = FastAPI()
| eapp.get("/") > Path operation
as def root(): decorator
return {"message"”: "Hello World"}
Type of request l

JSON Response



Async calls

If you are using third party libraries that tell you to call them with await, like: Common reasons to wait:
results some_library the data from the client to be sent through
the network
Then, declare your path operation functions with async def like: -the data sent by your program to be received
by the client through the network
get the contents of afile in the disk to be read by
read_results(): the system and given to your program

results some_library
results

*the contents your program gave to the
system to be written to disk

«a remote API operation

a database operation to finish

a database query to return the results etc.




Concurrency vs Parallelism

Concurrency It

Tell someone to finish something while you do your work, - W 0 ‘ CORES
e.g., ordering food - B o B /Y

)
| ol

CORE4

Parallelism

Get a number of agents supporting you in your work, e.g.,
cleaning your house

Parallelism is not always
FastAPl is both, feat Starlette. useful, nor is concurrency



Let's go through

- Basic FastAPIl app

- Doc/Redoc




Whatis a schema?

- The definition of format and purpose of a certain path/variable

o APl schema

o Data schema




Servers

One of:

e POST
e GET
o PUT

e DELETE
...and the more exotic ones

e OPTIONS

e HEAD

. Response

e HTML
e Text
e JSON

Request







Collecting data for APIs

javascript & Copy ¢ Edit

document.getElementById("myForm").addEventListener("submit", async fun
event.preventDefault(});

const formData = new FormData(this);

try {
const response = await fetch("https://example.com/api/submit",
method: "POST",
body: formData,
i

if (!response.ok) {
throw new Error{ HTTP error! Status: ${response.status}');

const result = await response.json();

console. log("Success:", result);

alert("Form submitted successfully!");
} catch (error) {

console.error("Error:", error);

alert("Failed to submit form.");

I

Form

function createTodo{) {
const text = document.getElementByIdI(
if (!text) return;

newTodo') .value;

fetch('http://localhost:3000/api/
method: 'POST',

"Content-Type': 'application/json’,
h
body: JSOMN.stringify({ t

.then(response ==

if (!'response.ok) throw new Error('Network response

return response.json();

. thenl =>
loadTodos();
document.getElementById{ 'newTodo')}.value = '';

.catch(error ==
console.error('Error:', error);
alert('Failed to create todo');

From individual fields (DOM Tree)

not ok');




Collecting files

@app.post("/uploadfile/") :

async def create_upload_file(file: UploadFile): | Chuﬂse FlIEE | ND ﬂle Chﬂsen
return {"filename": file.filename}

e g onatses ) | Choose Files | No file chosen

async def create_upload_files(files: list[UploadFile]):

return {"filenames": [file.filename for file in files]}

@app.get("/upload")
async def main():

content =
<body=>
<form actio iles/" enctype="multipart/form-data" method="post">
<input name="files" type="file" multiple>
<input type="submit">
form=
<form action="/uploadfiles/" enctype="multipart/form-data" method="post"=>
<input name="files" type="file" multiple>
<input type="submit">

</body>

return HTMLResponse(content:contentn




Cookies

Small amount of data sent by server to

‘\"'u -

your browser |
<
Remember state information P -
° SeSSion management Send sign-in request to server "
o Personalization
P Send session |D cookie back to browser /\353;4
> Tracking <
Request new page along with session 1D cookie Q:_;_\; "
» Response: depends on session validity

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies



Storage

sessionStorage
o Maintains a storage area for active sessions (including reload/restore)

o Resets if you close the browser

localStorage

o Persists on browser re-open




Response

FastAPI limits response to the defined types

o @Qives server error if incomplete or ill-formed data is received from the server

JSON Response

Redirect Response

File Response




= 188 - 199 are for "Information”. You rarely use them directly. Responses with these status

codes cannot have a body.
» 200 - 299 are for "Successful’ responses. These are the ones you would use the most.
* 280 isthe default status code, which means everything was "0K".

* Another example would be 281, "Created". It is commonly used after creating a new

record in the database.

» A special caseis 284, "No Content". This response is used when there is no content to
return to the client, and so the response must not have a body. St a t u S
* 380 - 399 are for "Redirection”. Responses with these status codes may or may not have a
body, except for 384, "Not Modified", which must not have one.
* 400 - 499 are for "Client error” responses. These are the second type you would probably O e S

use the most.

» Anexampleis 484, for a "Not Found" response.
* For generic errors from the client, you can just use 466 .

* 588 - 599 are for server errors. You almost never use them directly. When something goes
wrong at some part in your application code, or server, it will automatically return one of

these status codes.






oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")

@app.get("/items/")

n n
— async def read_items(token: Annotated[str, Depends(oauth2_scheme)]):
return {“token": token}

FastAPI -Swagger Ul

@ incognito

[ FastAPI-Swagger Ul X
< C  ® 127.0.0.1:8000/c & g & C @ localhost

Fast API

apijson

Authorize . - .
Available authorizations

Scopes are sed to grant an appiication different levels of access to data on benalf of the end user.

Each API may declare one or more Scopes.

default v
AP requires the following scopes. Select which ones you want to grant to Swagger UL
GET /items/ Readlems Get -
OAuth2PasswordBearer (QAuth2, password)
Flow: password

usemame:

No parameters

password:

Client credentials location:

Code Description Links
client id:

200 Successful Response No links
client_secret:

applicationfjson ~

Contols Accept header.




OAuth2

Designed to isolate authentication from backend/API

o Same FastAPI application can also handle the APl and authentication (like here)

Defines different types of flows

o Password flow

o Refresh token flow

o Device authorization flow, etc.




Authentication Flow

The user types
the username and password in the
frontend, and hits Enter.

The frontend (running in the user's
browser) sends
that username and password to a
specific URL in our API (declared
with tokenUrl="token").

The API checks
that username and password, and

responds with a "token".

* A "token" is just a string with some content that
we can use later to verify this user.
¢ Normally, a token is set to expire after some time.
®So, the user will haveto log in again at some
point later.
¢ And if the token is stolen, the risk is less. It is not
like a permanent key that will work forever (in
most of the cases).

The frontend stores that token
temporarily somewhere.

The user clicks in the frontend to go to
another section of the frontend web
app.

The frontend needs to fetch some
more data from the API.

eBut it needs authentication for that specific
endpoint.

*So, to authenticate with our AP, it sends a
header Authorization with a value
of Bearer plus the token.




What does it do?

It will go and look in the request for that Authorization header, check if the value is Bearer plus
some token, and will return the token as a str.

If it doesn't see an Authorization header, or the value doesn't have a Bearer token, it will respond
with a 401 status code error (UNAUTHORIZED) directly.

You don't even have to check if the token exists to return an error. You can be sure that if your
function is executed, it will have a str in that token.




Passwords (login routine)

Password Creation Password Verification

Random Plaintext Stored
Salt Password Salt

Plaintext

Password

Stored
Hash

Image source: https://www.innokrea.com/cryptography-hash-functions-hashes-and-passwords-part-2/




The complete auth with JWT tokens and
password hashing (bcrypt)

https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies



https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies

TODO: Screens + User Journey

Please complete and document if not already done




TODO: Design an APl interface

Based on the functionality you imagine that you need, design an API interface with dummy
calls but decent return response

Build your web pages and verify your user journey




Using reasoning models

https://platform.openai.com/docs/guides/reasoning-best-practices



https://platform.openai.com/docs/guides/reasoning-best-practices
https://platform.openai.com/docs/guides/reasoning-best-practices
https://platform.openai.com/docs/guides/reasoning-best-practices
https://platform.openai.com/docs/guides/reasoning-best-practices
https://platform.openai.com/docs/guides/reasoning-best-practices

The
orchestrator

Example: Customer service Pre-processing
. Customer b ] .

, . ol L
olic
_‘ Tools Dm:umeyms js > Routines -
| Agents — o
. 4
CRM Knowledge
base
A A
Customer Return
info policy | Orchestration
Y Y .
“My order was damaged.” - . P
. Triage . Policy execution
4o-mini ) L 40

Y

Action taken
4o

—» | Action validation ]
03-mini

Our GPT-40 and GPT-40 mini models triage order details with customer information, identify the order issues and the

return policy, and then feed all of these data points into 03-mini to make the final decision about the viability of the

return based on policy.




Recommended use cases

“o1’s reasoning capabilities enable our multi-agent platform Matrix to produce exhaustive,

N aVI g atl ng am bl g u Ity well-formatted, and detailed responses when processing complex documents. For example,

ol enabled Matrix to easily identify baskets available under the restricted payments capacity

in a credit agreement, with a basic prompt. No former models are as performant. ol yielded

stronger results on 52% of complex prompts on dense Credit Agreements compared to other

Finding needles in a haystack

models.”

. . . . , Al knowledge platform company for legal and finance
Finding relationships and nuances

aC FOSS a I a rg e d ataset "To analyze a company's acquisition, ol reviewed dozens of company documents—like
contracts and leases—to find any tricky conditions that might affect the deal. The model was
tasked with flagging key terms and in doing so, identified a crucial "change of control"
provision in the footnotes: if the company was sold, it would have to pay off a $75 million loan
immediately. ol's extreme attention to detail enables our Al agents to support finance

professionals by identifying mission-critical information.”

, Al financial intelligence platform

“Tax research requires synthesizing multiple documents to produce a final, cogent answer.
We swapped GPT-4o for ol and found that ol was much better at reasoning over the interplay
between documents to reach logical conclusions that were not evident in any one single
document. As a result, we saw a 4x improvement in end-to-end performance by switching to

ol—incredible.”

, Al platform for tax research




Recommended use cases contd

Multi-step agentic reasoning
Visual reasoning

Code

“We use ol as the planner in our agent infrastructure, letting it orchestrate other models in the

workflow to complete a multi-step task. We find ol is really good at selecting data types and

breaking down big questions into smaller chunks, enabling other models to focus on

execution.”

, Al knowledge platform for the pharmaceutical industry

“We automate risk and compliance reviews for millions of products online, including luxury
jewelry dupes, endangered species, and controlled substances. GPT-40 reached 50%
accuracy on our hardest image classification tasks. o1 achieved an impressive 88% accuracy

without any modifications to our pipeline”

, Al-powered risk and compliance platform

“03-mini consistently produces high-quality, conclusive code, and very frequently arrives at

the correct solution when the problem is well-defined, even for very challenging coding tasks.

While other models may only be useful for small-scale, quick code iterations, 03-mini excels at

planning and executing complex software design systems.”

, collaborative agentic Al-powered IDE, built by Codeium




Recommended use cases contd

Evaluation and benchmarking for other model responses

o LLM as a judge




Do’s and Don'ts with reasoning models

DOs DONTSs
Developer messages are the new system Avoid asking to ‘think step-by-step’ or
messages ‘explain your reasoning’

o Platform > Developer > User > Tool
Be vague about end goal

o Keep prompts simple and direct
Better zero-shot success

Provide all constraints



Level of reasoning

Type of data: Validations to be performed:

Patient ID: A randomly generated patient id

Prescribing medications that the patient is allergic to

Date of Birth: Date of birth of the patient

SRy Current medications do not match medical history
Medical History: Past diagnoses Treatment plan does not match diagnosis
Current Medications: Medication the patient is taking

Allergies: Identified allergies

Lab Results (Glucose mg/dL)

Diagnoses: Current diagnosis

Treatment Plan: Current treatment plan

Is Valid: Whether or not the current row of data is valid (True/False)

Issue: If the row of data is not valid, what the issue is

https://cookbook.openai.com/examples/o1/using_reasoning_for_data_validation



https://cookbook.openai.com/examples/o1/using_reasoning_for_data_validation

How to?

Usi i del in Chat C leti <
sing a reasoning model in Chat Completions python (o) Turn'1 Turn 2 Turn 3
from openai import OpenAIl
client = OpenAI()
Input
prompt = "
Write a bash script that takes a matrix represented as a string with Input
format '[1,2],[3,4]1,[5,6]"' and prints the transpose in the same format. .
npu
Reasoning

response = client.chat.completions.create(
model="03-mini",

. ; tput
reasoningeetforts mediun”, o Resssning
messages=[
{
"role": “wuser”; Output -/ .
"content": prompt Reasoning
}
] Output
Context window ¢
) 128ktokens O
Truncated
print(response.choices[0].message.content) output

Note: your reasoning is part of tokens




DO: Which of your endpoints can use
reasoning?

List these APl endpoints separately

Try out models
> 01
o O3-mini
o Gemini Flash 2.0 Thinking

o Deepseek-r1




DO: Within your prompts for web dev, which
prompts took too much effort?

Try reasoning models to generate prompts

Try reasoning models to do the task




In-built tools

OpenAl
o Web search

o File search

o Computer use!

Claude

o Use function calling

Google

o (Google search

from google import genai
from google.genai.types import Tool, GenerateContentConfig, GoogleSearch

client = genai.Client()
model_id = "gemini-2.8-flash"

google_search_tool = Tool(
google_search = GoogleSearch()

)

response = client.models.generate_content(
model=model_id,
contents="When is the next total solar eclipse in the United States?",
config=GenerateContentConfig(
tools=[google_search_tool],
response_modalities=["TEXT"],



https://ai.google.dev/gemini-api/docs/grounding?lang=python
https://ai.google.dev/gemini-api/docs/grounding?lang=python

Introduction to RAG




What's RAG?

Retrieval Augmented Generation (RAG) Sequence Diagram

o Document Ingestion
LangChain |

Llamalndex ;
- Preprocess >
Documents Documents e
Enterprise embeddings
Knowledge Base
Llamaindex /1?
Embedding
Model Vector DB
User Query, Retrieval, and

Response Generation

LA X J

LLM
O Chat Bot > — BN | (potentially prompt-
>
Web App User query Query and Prompt + query (p tun:d'; i
embedded query + retrieved
A enhanced context

User

Streamed text response (generative)

Source: h



https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/

Vector embeddings

« Compressed latent
space, typically built to
capture ‘meaning’

byl

« Training pipelines
typically bring similar Input —>
inputs together. Hence, X
utility in

« Search

* Clustering

« Recommendation
« Anomaly, etc.

N/

e
o

Feature

AR RN

Vi




Do we need a DB?

Functions such as search, cluster,
rank, retrieve are efficiently Weaviate

implemented using vector
databases

Some of them are also optimized Pinecone

for use in cloud, being a common
ChromaDB

use case

Redis Stack ElasticSearch



Different types
of search

WP Weaviate @ Deeplearning.Al

Sparse vs Dense Search

e Bagof Words
o The easiest way to do keyword matching is using Bag
of Words - to count how many times a word occurs in
the query and the data vector and then return objects
with the highest matching word frequencies.

e Thisis known as Sparse Search
o because the text is embedded into vectors by
counting how many times every unique word in your
vocabulary occurs in the query and stored sentences.

e Mostly Zeroes (Sparse Embedding)

o Since the likelihood of any given sentence containing
every word in your vocabulary is quite low the
embeddings is mostly zeroes and thus is known as a
sparse embedding.

Raw Text Bag-of-words
vector
]
A E =
itis a puppy and it SHalls o |E|=
‘ isextremelycutel ’ g|Z[2[E2|2]|=2|2]|=
-— -— o o —_— — (= N




WPy Weaviate @ DeeplLearning.Al

Hybrid Search

e Whatis Hybrid Search?
o Hybrid search is the process of performing both
vector/dense search and keyword/spcrse search and
then combining the results

Hybrid search

e Combination based on a Scoring System
o This combination can be done based on a scoring
system that measures how well each objects matches
the query using both dense and sparse searches.




Who uses Weaviate?

» Software Engineers

o Weaviate is an ML-first database engine

o Qut-of-the-box modules for Al-powered searches, automatic classif

C O m m O n o Full CRUD support

o Cloud-native, distributed system that runs well on Kubernetes

u S e C a S e S o Scales with your workloads

e Data Engineers

o Weaviate is a fast, flexible vector database
o Use your own ML model or third party models

o Run locally or with an inference service
» Data Scientists

o Seamless handover of Machine Learning models to engineers and M
o Deploy and maintain your ML models in production reliably and effici

o Easily package custom trained models



Who's providing embeddings?

Ollama CIaUde

o Nomic Available Models

Voyage recommends using the following text embedding models:

o Snowflake

Context Embedding
Model Length Dimension Description
OpenAl
voyage-3- 32,000 1024 (default), The best general-purpose and multilingual retrieval
1o Text_em beddl ng_B_SmaI I large 256, 512, 2048 quality.
. voyage-3 32,000 1024 Optimized for general-purpose and multilingual retrieval
° TeXt'em be dd | ng '3' I d I’g e quality. See blog post for details.
voyage-3- 32,000 512 Optimized for latency and cost. See blog post for details.
- . lite
Gemini
voyage- 32,000 1024 (default), Optimized for code retrieval. See blog post for details.
o gemini-embedding-exp-03-07 S i
voyage- 32,000 1024 Optimized for finance retrieval and RAG. See blog post for

o text-embedding-004 finance-2 details.

° em be ddl ng_oo 1 voyage-law- 16,000 1024 Optu-mzed for legal. and long-context rerl'le\{al and RAG.
2 Also improved performance across all domains. See blog

post for details.




Sample use cases

Constructing context from many different sources, often requiring embedding based

search/match

*"Suggest trending tech and non- "Suggest 5 trending research topics
tech jobs | can apply for with my in computer vision for final-year
degree." B.Tech project."

*"What are the latest Al techniques

-"Compare short-term courses for being used for water management
in Indian cities?"

data science vs. d|9|ta| marketmg *"Plan a Goa trip under 10,000 Why RAG?: Retrieves recent papers, conference

with fees and reviews." . . proceedings, and Google Scholar trends to
for 4 friends with hotel, food, recommend topics.

. . and places to visit.”
Why RAG?: Retrieves real-time course and

job data from websites and combines it with

personalized advice *"What are offbeat travel places

near Delhi for a 2-day trip?”

Why RAG?: Combines latest travel blogs,
real-time hotel/transport prices, and
customizes itinerary.



Code

Result

Implement with weviate

collection_name = "GitBookChunk"

chunks = client.collections.get(collection_name)
response = chunks.query.near_text(query="history of git", limit=3)

"data": {
"Get": {
"GitBookChunk": [
{
"chapter_title": "@l-introduction",
"chunk'": "=== A Short History of Git\n\nAs with many great things in life, Git beg
"chunk_index": @

}l

{
"chapter_title": "@l-introduction",
"chunk'": "== Nearly Every Operation Is Local\n\nMost operations in Git need only 1
"chunk_index": 2

1

{
"chapter_title": "@2-git-basics",
"chunk": "==\nYou can specify more than one instance of both the '——author’ and "-
"chunk_index": 2

}l

collection_name = "GitBookChunk"

chunks = client.collections.get(collection_name)

response = chunks.generate.near_text( RAG

query="history of git",

limit=3, () r]

grouped_task="Summarize the key information here in bullet points"

’ result

print(response.generated)

The G in RAG

— Git began as a replacement for the proprietary DVCS called BitKeeper, which was use@ byllth
— The relationship between the Linux development community and BitKeeper broke down in 2005,
— Git was designed with goals such as speed, simple design, strong support for non-linear de
— Most operations in Git only require local files and resources, making them fast and effici
— Git allows browsing project history instantly and can calculate differences between file v
— Git allows offline work and does not require a network connection for most operations.

— This book was written using Git version 2, but most commands should work in older versions



https://weaviate.io/developers/weaviate/starter-guides/generative
https://weaviate.io/developers/weaviate/starter-guides/generative
https://weaviate.io/developers/weaviate/starter-guides/generative

Apply LLM to each result

collection_name = "WineReview"

reviews = client.collections.get(collection_name)
response = reviews.generate.near_text(
query="fruity white wine",
limit=3,
single_prompt=
Translate this review into French, using emojis:
===== Country of origin: {country}, Title: {title}, Review body: {review_body}

CL T el Y

Origine : Etats-Unis

Titre : Schmitz 24 Brix 2012 Sauvignon Blanc (Sierra Foothills)

Corps de la critique : Pas du tout un Sauvignon Blanc typique, il sent 1'abricot et le
chevrefeuille et a le go(t de la marmelade. Il est sec, mais a le golt d'un vin de dessert
tardif. Attendez-vous a une petite aventure gustative ici.

===== Original review =====

Country: US,

Title: Schmitz 24 Brix 2012 Sauvignon Blanc (Sierra Foothills)

Review body Not at all a typical Sauvignon Blanc, this smells like apricot and honeysuckle
and tastes like marmalade. It is dry, yet tastes like a late-harvest dessert wine. Expect
a little taste adventure here.




Consolidated example

Refer

https://github.com/rjalexa/booksimil/blob/main/booksimil/mybooks.ipynb



https://github.com/rjalexa/booksimil/blob/main/booksimil/mybooks.ipynb

Fresh off the oven

OpenAl now supports file searches without explicit chunking strategies, etc. using

Responses API

https://cookbook.openai.com/examples/file search responses

New tools in town
o Web Search

o File Search

o Computer Use


https://cookbook.openai.com/examples/file_search_responses

Agents




Agent prototypes

Narrow vertical expertise
o Qutlining and planning

o Someone good at searching sources and writing a first draft

o A master editor




Agentic Workflows

Actions Pre-processing Code iterations

- — _ — ] f pat - i i nerat i ( )

g N [l AN EN T

1 o Public Tes
i ¥ 1 /\ > /\ \ )| /P .Y e e R :
Reasoning ' [ 1' J J ] J
- LM Env | Feedback Refine ‘ , = —
roblom ublic Tosts ey i H
rac.es _ | \'. 2 Model M \ 7 Remecion , ‘\’u.":f.,'.u.‘, Ao [+ n’ | | soon
e _ ) _ _ - ' Use M to pet fndh-:lr‘(m s own cutpet Use M 1 refine its previous u.l:;vul. given its foedback
Db servat |’C| ns (a) The proposed AlphaCodium flow.
H A k “:: + r,n’_",i t} SELF-REFINE: Code Generation with AlphaCodium: From Prompt Engineering to Flow
EALLIREasON * AL Iterative Refinement with Self-Feedback

Engineering




Why?

Planning before execution
Tool use
Reflecting on intermediate results

Multiple perspectives

Common memory to track progress




Let’'s build one

Refer to notebook in web-dev-with-ai repo
o dlai-build-an-agent.ipynb
o DO: Modify this for gemini and run!

> Questions to ponder:
o How will you use this for multiple conversations in parallel? (Streaming)

> How will you do very long tasks, e.g., build this game (Persistence)

o How to implement this across different runs and possibly shutdowns?




Use tools (and
build tools)

Remember, tool’s output
is for an LLM, not a
human!

search = DuckDuckGoSearchResults(output_format="1list")

search. invoke('"0bama")

[{'snippet': 'Obama was headed to neighboring Michigan later Tuesday, among the several stop%]tt
'title': 'Obama and Walz host rally in Wisconsin as early voting kicks off | AP News',
'link': 'https://apnews.com/article/wisconsin-voting—trump-harris—obama-walz-aeeff20abl7a5417:
{'snippet': "Obama has directed plenty of criticisms at Trump over the years, so some might pe1
'title': 'Why Obama slamming Trump on his response to Covid matters - MSNBC',
'link': 'https://www.msnbc.com/rachel-maddow-show/maddowblog/obama—slamming—trump—-response—co\
{'snippet': 'Learn about the life and achievements of Barack Obama, the 44th president of the L
'title': 'Barack Obama | Biography, Parents, Education, Presidency, Books ...',
"link': 'https://www.britannica.com/biography/Barack-0bama'},
{'snippet': "He maintains a close friendship with Mr. Obama. He first weighed in on presidenti:

'title': 'Bruce Springsteen to Appear With Harris and Obama at Atlanta and ...',
'link': 'https://www.nytimes.com/2024/10/22/us/politics/springsteen-harris—atlanta—obama-phill


https://python.langchain.com/docs/integrations/tools/
https://python.langchain.com/docs/integrations/tools/
https://python.langchain.com/docs/integrations/tools/

Building a tool

Building a tool is mostly just implementing function calls

o Retreive something from the web api

o Typically returns html

o Parse with beautifulsoup

o Return in natural language/list/json




Letting tools run code?

https://github.com/Openlinterpreter/open-interpreter



https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter

@m @ DeeplLearning.Al

Need a

@ o © © crew?

Tech Job Personal Profiler Resume Strategist Engineering
Researcher for Engineers for Engineers Interview Preparer

(crew.ai)

[ ]

e Read websites

® Read resume

e Perform RAG (Retrieval Augmented Generation) on resume

Source: https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/



https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/

Making a crew with crew.al
Step 1: Hire the people

Planner

Writer

Editor

writer = Agent(
role="Content Writer",
goal="Write insightful and factually accurate "
"opinion piece about the topic: {topic}",
backstory="You're working on a writing "

"a new opinion piece about the topic: {topic}. " editor = Agent(
"You base your writing on the work of " role="Editor",

PLanner R Aent . “the Content Planner, who provides an outline " goal="Edit a given blog post to align with "
mlef,.content i ST "and relevant context about the topic. " "the writing style of the organization. ",
goal="Plan engaging and factually accurate content on {topic}", ) ) ) ) R
backstory="You're working on planning a blog article " “You follow the main objectives and " backstory="You are an editor who receives a blog post "

"about the topic: {topic}." "direction of the outline, " "from the Content Writer. "
"You collect information that helps the " "as provide by the Content Planner. " "Your goal is to review the blog post "
alc. enceleann Soneti g o “You also provide objective and impartial insights " "to ensure that it follows journalistic best practices,"
..i;grm:};ikmizot”;:dbgsciis;Z:S.'. ::and back them up with information " "provides balanced viewpoints "
"the Content Writer to write an article on this topic.", "prov1de by the C(?ntent Plar.mgr. ) N “when PrOVldlr_‘g opInionston asserFlUnSu I.I
allow_delegation=False, You acknowledge in your opinion piece "and also avoids major controversial topics "
verbose=True "when your statements are opinions " "or opinions when possible.",

) "as opposed to objective statements.", allow_delegation=False,
allow_delegation=False, verbose=True
verbose=True )




Step 2: Give them tasks

Task: Plan Task: Write Task: Edit
. _ edit = Task(
plan = Taﬁk( ] write = T?Sk( description=("Proofread the given blog post for "
description=( description=( “"grammatical errors and "
"1. Prioritize the latest trends, key players, " "1. Use the content plan to craft a compelling " oy nmen Cpwirhgthe b iancieR el

expected_output="A well-written blog post in markdown format,

" Gl I?Oteworthy news On.{tOpiC}'\nl.l . " "blog post on {topic}.\n" "ready for publication, "
2. Identify the target audience, considering "2. Incorporate SEO keywords naturally.\n" "each section should have 2 or 3 paragraphs.”,
"their interests and pain points.\n" "3, Sections/Subtitles are properly named " agent=editor
"3. Develop a detailed content outline including " "in an engaging manner.\n" )
"an introduction, key points, and a call to action.\n" "4, Ensure the post is structured with an "
"4, Include SEO keywords and relevant data or sources.” "engaging introduction, insightful body, "
)y . "and a summarizing conclusion.\n"
expected_output="A comprehensive content plan document " "5, proofread for grammatical errors and "

"with an outline, audience analysis,
"SEO keywords, and resources.",
agent=planner,

"alignment with the brand's voice.\n"
Vo

) expected_output="A well-written blog post "
"in markdown format, ready for publication,
"each section should have 2 or 3 paragraphs.”,
agent=writer,




Step 3: See the magic

crew = Crew(
agents=[planner, writer, editor],
tasks=[plan, write, edit],
verbose=2

result = crew.kickoff(inputs={"topic": "Artificial Intelligence"})

Works with Ollama, Gemini, OpenAl, Mistral, HuggingFace



More features

A\

Self-delegation

Memory sllow sgent o communictevithsac Events

other requesting help with something)

Tools: https://docs.crewai.com/concepts/tools



https://docs.crewai.com/concepts/tools

Agentic RAG

Query/Task —
®_ - &
— RAG System & @ ol ..
& & g
)
| .
A\
Y

Continue

Yes (

Source: https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21



https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21

Agents that live and learn (humans?)

The Platform for Building Stateful Agents

Build agents with infinite context and human-like memory,

that can learn from data and improve with experience

Install Letta Request Cloud Access




Prompting Review




The types of prompting

! H & a !

Step-back Chain-of- Tree-of- Self- Agentic
thought thought consistency (ReAct)



Model Context Protocol (MCPs)

Connecting with other tools/resources

Server: Client:

Exposes app specific data, e.g.,

Al application that uses this data,
Whatsapp would expose chats PP

e.g., Claude Desktop

https://www.anthropic.com/news/model-context-protocol



https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol

Example interaction

1. Claude Receives the User Message

json

"type": "user_message",

"content": "Send a message to Raj on WhatsApp: 'See you at 7 PM!'"

2. Claude Emits an MCP Tool Call

json

“"type'": "tool_use",
"tool_name": "whatsapp.send_message",
"parameters": {

""contact_name": "Raj",

"message": "See you at 7 PM!™

3. WhatsApp Tool Executes and Responds

The WhatsApp plugin, listening for whatsapp.send_message , performs the action and replies with a

9 Copy » Edit result:
json @ Copy v Edit
{
"type": "tool_result",
"tool_name": "whatsapp.send_message",
"status": "success",
"data": {
"contact_name": "Raj",
"delivery_status": "sent"
}

@ Copy ¥ Edit

4. Claude Responds to the User

json @ Copy

"type": "model_response",

"content": "@@ Message sent to Raj on WhatsApp: 'See you at 7 PM!'"

2 Edit



Integrating 6 9
With Fa StA P I FastAPI-MCP

A zero-configuration tool for automatically exposing FastAPI endpoints as Model Context Protocol (MCP) tools.

pypi package [02:0 | python |3.10 | 3.11 | 3.12 | @ Fastapi JEATEY bev | ©) c1 [passing 81% -

& Cursor File Edit Selection View Go Run Terminal Window Help

serverpy

Features

» Direct integration - Mount an MCP server directly to your FastAPI| app

« Zero configuration required - just point it at your FastAPI app and it works
* Automatic discovery of all FastAPI endpoints and conversion to MCP tools
 Preserving schemas of your request models and response models

« Preserve documentation of all your endpoints, just as it is in Swagger

+ Flexible deployment - Mount your MCP server to the same app, or deploy separately




Deployment




Types of servers

LAMP - Most commonly used

Linux Apache MySQL PHP/Perl/Python
XAMPP v WAMP Vvs MAMP Vs LAMP

W - Windows

IVI-IVIaC

X - Cross platform (PHP, Perl)




What does Apache do?

~|Index
~¢Q \ File
HTTP Request <

(index.php) Apache ;
Client T %
(Web Browser) Server g
& —
- ResponSC Software =

(html file) -

Host for
www.webqoel.com

Software

Workflow of Apache Web Server



Types of websites

Static - HTML, JS, CSS - Github.io
Backend APIs — FastAPI, Flask & Railway or Render

Full Stack apps - React/Next + Express - Railway/Render

- Requires two servers for next + express but can be combined for react + express




Environments requirements

Next/react js -> node
- When installing on a server, requires npm install
Fastapi/flask -> python

- When installing on a server, requires pip install —r requirements.txt

Therefore, suffer from cold starts (5 — 20s) on serverless deployments

Or require paid plans to keep the instance on



But what about my DB?

SQLlite -> Works only on persistent disk, doesn’t work on serverless containers since they
only offer ephemeral disks

You can use sqllite if you choose to deploy on aws ec2 instances

To deploy,

o use a managed DB, typically postgres using supabase or railway postgres



What about files?

Typically stored on aws s3 buckets due to cheaper and scalable object storage

URLs are stored in database

Other options: MinlO, Wasabi (much cheaper storage, also available for self hosting)




Securing your website

Certificates
o HTTPS and SSL certificates to keep communication with website encrypted

CORS

> Only allow API requests from sources that you recognize (unless the APls are meant for public use)

Rate limits
from fastapi import Depends

° Restrict |Ogins th rOUgh Ca ptCha from slowapi.decorators import limit

o Restrict API call frequency per user/IP

async def read_items():

return {"message": "This endpoint is rate limited to 5 requests per minute"}

async def subm
return {"message": "This endpoint is rate limited to 2 requests per minute"}

Example of limiting rates using fastapi’s slowapi



Scaling your we

bsite

Load balancing

Caching (Distributed caching)

User

How does Load balancing work?

User

Server

Internet Load balancer

User Server

CloubDNS

Source: https://www.cloudns.net/blog/load-balancing/

Server

Use Case

Web App Data Caching
API Rate Limiting
Session Management
Job Queue | Task Queue

Pub/Sub Messaging

ML Feature Caching
Database Query Caching
Content Delivery | CDN

Distributed Locking

User Profile Caching

What is Stored (5 Words)

Frequently accessed app-level data
Request count per user/IP

Temporary user session state

Pending background processing tasks

Real-time messages in channels

Precomputed feature vectors or scores

Results of expensive DB queries

Static files like images/CSS/JS

Lock tokens for shared resources

Cached serialized user profile

Common System [ Library

Redis, Memcached, Spring Cache
Redis + Lua scripts

Redis, Express-session, Django-Redis
Redis (with Celery, Bull)

Redis Pub/Sub, Socket.io

Redis, Feast (feature store)
Redis, Memcached, Hibernate Cache
Cloudflare, Akamai, Varnish

Redis + RedLock algorithm

Redis, Flask-Caching

Expected Benefit

Faster page loads, less DB load
Prevents abuse, ensures fair access
Enables stateless servers, fast access
Async processing, load off main app

Low-latency, real-time notifications/
messages

Reduces recomputation, speeds up inferen
Reduced latency, less DB pressure
Clobal fast access to assets

Prevents race conditions, ensures
consistency

Quicker page loads, lower DB reads




Hooks and Sockets

Real time communication

o Set up a socket

Event based communication

o Set up a hook




HTMX

Library that allows you to
access modern browser
features (like animations,
editing, etc.) directly using
html instead of using js

See examples here:

To understand htmyx, first let's take a look at an anchor tag:

<a href="/blog">Blog</a>

This anchor tag tells a browser:
“When a user clicks on this link, issue an HTTP GET request to ‘/blog’ and load the response content into the browser window".
With that in mind, consider the following bit of HTML:
"/clicked"

"click"
"#parent-div"

outerHTML">

This tells htmx:

“When a user clicks on this button, issue an HTTP POST request to ‘/clicked’ and use the content from the response to replace the
element with the id parent-div in the DOM"
htmx extends and generalizes the core idea of HTML as a hypertext, opening up many more possibilities directly within the language:
+« Now any element, not just anchors and forms, can issue an HTTP request
« Now any event, not just clicks or form submissions, can trigger requests
* Now any HTTP verb, not just GET and POST , can be used

* Now any element, not just the entire window, can be the target for update by the request


https://htmx.org/examples/

.k.
O
©

o)

O
()
QD =

R ¢
3 3
5 0O
o Q
u

= =

O

e
(@)
c

=




	Slide 1: Web Development with AI
	Slide 2: Why this course?
	Slide 3: Course Philosophy and Approach
	Slide 4: What are we going to do?
	Slide 5: Evaluation
	Slide 6: Recommended read for when prompting isn’t enough
	Slide 7: What are websites? Some basic terminologies
	Slide 8: Programmatic access to a document (html/xml): DOM
	Slide 9: What are scripts?
	Slide 10: Styling content
	Slide 11: Margin
	Slide 12: JS Basics
	Slide 13: Events in JS
	Slide 14: DO: Let’s make something?
	Slide 15: DO: Using variables for interactions
	Slide 16: DO: Let’s make different layouts and styles
	Slide 17: Some layout frameworks
	Slide 18: DO: Let’s make multipage apps
	Slide 19: Responsive Design
	Slide 20: Understanding FlexBox
	Slide 21: Flexbox example
	Slide 22: Media Queries
	Slide 23: Do you need a media query?
	Slide 24: Styling images
	Slide 25: Frameworks
	Slide 26: Common frameworks
	Slide 27: What do these bring to the table?
	Slide 28: Reflections from last class  Guest lecture by Archit
	Slide 29: Prompting like a pro
	Slide 30: OpenAI
	Slide 31: Services
	Slide 32: Prompting
	Slide 33: Strategies for prompting
	Slide 34: Providing reference text
	Slide 35: Split complex tasks into simpler subtasks
	Slide 36: Give the model time to "think"
	Slide 37: Use tools
	Slide 38: Test changes systematically
	Slide 39: More from OpenAI
	Slide 40: Gemini
	Slide 41: Services
	Slide 42: Basic usage
	Slide 43: Strategies for prompting
	Slide 44: Include Few-shot Examples
	Slide 45: Adding contextual information
	Slide 46: Add prefixes
	Slide 47: Let the model complete partial output
	Slide 48: Break down prompts into simple components
	Slide 49: Different parameter values
	Slide 50: Iterating on prompts
	Slide 51: Prompting with files
	Slide 52: Claude
	Slide 53: Key capabilities
	Slide 54: Before you prompt
	Slide 55: Create evals
	Slide 56: Levels of tests
	Slide 57: How to prompt Claude?
	Slide 58: Clear and direct prompts
	Slide 59: Prompt to think
	Slide 60: System prompts
	Slide 61: Prefill responses
	Slide 62: Chain it up
	Slide 63: Long prompts
	Slide 64: DO: Make screens for your web app
	Slide 65: DO: Generate each screen using an API
	Slide 66: Managing data
	Slide 67: What are databases?
	Slide 68: Good DB Design
	Slide 69: Designing your DB: The process
	Slide 70: The purpose
	Slide 71: Gathering information
	Slide 72: Dividing information into tables
	Slide 73: 2NF: No partial dependencies
	Slide 74: 3NF: No transitive dependencies
	Slide 75: BCNF: Boyce Codd Normal Form
	Slide 76: 4th NF: No multi-valued dependencies
	Slide 77: When to Stop Normalizing?
	Slide 78: Recap from guest lecture:  Designing your DB
	Slide 79: Requests and API
	Slide 80: Making requests
	Slide 81: Let’s see a quick demo
	Slide 82
	Slide 83: Typing hints for FastAPI
	Slide 84: The basic app
	Slide 85: Async calls
	Slide 86: Concurrency vs Parallelism
	Slide 87: Let’s go through
	Slide 88: What is a schema?
	Slide 89: Servers
	Slide 90: Refer main.py in fastapi-demo for examples
	Slide 91: Collecting data for APIs
	Slide 92: Collecting files
	Slide 93: Cookies
	Slide 94: Storage
	Slide 95: Response
	Slide 96: Status Codes
	Slide 97: Security
	Slide 98: Authentication – OAuth2
	Slide 99: OAuth2
	Slide 100: Authentication Flow
	Slide 101: What does it do?
	Slide 102: Passwords (login routine)
	Slide 103: The complete auth with JWT tokens and password hashing (bcrypt)
	Slide 104: TODO: Screens + User Journey
	Slide 105: TODO: Design an API interface
	Slide 106: Using reasoning models
	Slide 107: The orchestrator
	Slide 108: Recommended use cases
	Slide 109: Recommended use cases contd
	Slide 110: Recommended use cases contd
	Slide 111: Do’s and Don’ts with reasoning models
	Slide 112: Level of reasoning
	Slide 113: How to?
	Slide 114: DO: Which of your endpoints can use reasoning?
	Slide 115: DO: Within your prompts for web dev, which prompts took too much effort?
	Slide 116: In-built tools
	Slide 117: Introduction to RAG
	Slide 118: What’s RAG?
	Slide 119: Vector embeddings
	Slide 120: Do we need a DB?
	Slide 121: Different types of search
	Slide 122: Hybrid search
	Slide 123: Common use cases
	Slide 124: Who’s providing embeddings?
	Slide 125: Sample use cases
	Slide 126: Implement with weviate
	Slide 127: Apply LLM to each result
	Slide 128: Consolidated example
	Slide 129: Fresh off the oven
	Slide 130: Agents
	Slide 131: Agent prototypes
	Slide 132: Agentic Workflows
	Slide 133: Why?
	Slide 134: Let’s build one
	Slide 135: Use tools (and build tools)
	Slide 136: Building a tool
	Slide 137: Letting tools run code?
	Slide 138: Need a crew? (crew.ai)
	Slide 139: Making a crew with crew.ai Step 1: Hire the people
	Slide 140: Step 2: Give them tasks
	Slide 141: Step 3: See the magic
	Slide 142: More features
	Slide 143: Agentic RAG
	Slide 144: Agents that live and learn (humans?)
	Slide 145: Prompting Review
	Slide 146: The types of prompting
	Slide 147: Model Context Protocol (MCPs) Connecting with other tools/resources
	Slide 148: Example interaction
	Slide 149: Integrating with FastAPI
	Slide 150: Deployment
	Slide 151: Types of servers
	Slide 152: What does Apache do?
	Slide 153: Types of websites
	Slide 154: Environments requirements
	Slide 155: But what about my DB?
	Slide 156: What about files?
	Slide 157: Securing your website
	Slide 158: Scaling your website
	Slide 159: Hooks and Sockets
	Slide 160: HTMX
	Slide 161

