
Web
Development
with AI
DR ANUP AM S O BT I

P LAK S HA UNI V ER S I TY

Why this course?

• Barriers to code (of all types) are reducing

• Infinite demand for software automation

• Need to build software quickly with the best
tools available and SELL!

• LLMs are a tool to understand the best

available methods and generate software.

• Let’s try to learn how to use it best!

Course Philosophy and Approach

Menu card approach

◦ Know your options. Explore more when required.

LLMs to mimic (expert) human behavior at a workflow level

Use flexible approaches

◦ With respect to models

◦ With respect to products, e.g., don’t depend too much on Cursor/VS Code.

What are we
going to do?

Lect. Topic Details

1 WTH is web?

HTML/Styling/Interactivity - JS; Bootstrap, Tailwind, React, Vue, D3.js,

Chart.js

2 What's possible in web? Library usage examples

3 Prompting LLMs Single shot prompting, Editing with prompts, Maintaining context

4 Expanding web users Responsive Design, Web Sockets, Hooks

5 Prompting in context Multi-file editing with prompts, Sharing documentation with LLMs

6 FastHTML/FastAPI Basics, HTMX, async workflows, DB integration

7 FastHTML - II Websockets, Authentication

8 Database design basics

User management, DB operations, atomicity, etc. Prompting for DB

design.

9

Stitching databases with

frontend Prompts for integrating DBs with web pages

10 Beyond databases Handling large data, caching

11

Using reasoning models -

o1, gemini 2.0 Reason before you respond. Hybrid use of models.

12 RAG

Vector embeddings, Retreiving content, Handling large data, Establish

Causation

13 Agentic RAG Adding helpers to your RAG pipelines

14 Multi agent systems

The benefit of having multi-role agents and orchestrating workflows in

between agents

15 Using memory with LLMs

How to orchestrate memory, what to retreive for context, what kind of

context is good context, scratchpadding

Evaluation
Lab

presentations (6) 70%

The lab presentations would be

updates on things you've tried

towards your project from the

lecture and its effect on your

course project.

Please read papers/watch youtube

to see if people have tried similar

things that you are trying to do.

How did they phrase their

prompts? What problems did they

encounter?

Demo day 20%

Attendance and

class

participation 10%

More than 80% = 10 marks (full)

70 to 80 % = 8 marks

60 to 70 % = 6 marks

Less than 60 % = 0 marks

There will be 3 star presentations declared every 2 weeks. If you get

more than 3 stars, you get a grade bump.

Recommended read for when prompting isn’t
enough

https://developer.mozilla.org/en-US/docs/Learn_web_development

https://developer.mozilla.org/en-US/docs/Learn_web_development
https://developer.mozilla.org/en-US/docs/Learn_web_development
https://developer.mozilla.org/en-US/docs/Learn_web_development

What are
websites?
Some basic
terminologies

- Inbuilt support for multiple modalities like

<audio>, <video>, <track>

- More structure for text, e.g., <header>, <footer>,

<article>, <section>, <aside>, <figure>,

<figcaption> etc.

- Enhanced forms

- Scriptable graphics

- LocalStorage/SessionStorage

- Improved scripting and APIs: websockets, web

workers (background js)

HTML – HyperText Markup Language

(latest version 5) [2014 onwards]

Programmatic access to a document
(html/xml): DOM

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

What are
scripts?

Things that allow dynamic

interactions/content, e.g., mouse hovers,

scroll, etc.

- JavaScript (JS), TypeScript (superset

compiled to JS), WASM (Web Assembly

for running Go/Rust in the browser)

Executable JS code (could be client or

server side but mostly client side)

Styling
content

Cascading Style Sheets (CSS)

- Style fixed for elements

- or rendered at load time on the server side (SSR – server

side rendering)

Famous:

- https://ui.shadcn.com/

- https://tailwindcss.com/

- https://m3.material.io/styles/color/system/overview

https://playcode.io/css

https://ui.shadcn.com/
https://tailwindcss.com/
https://m3.material.io/styles/color/system/overview
https://m3.material.io/styles/color/system/overview

Margin

https://developer.mozilla.org/en-US/docs/Web/CSS/margin

https://www.w3schools.com/css/css_boxmodel.asp

JS Basics

Events in
JS

DO: Let’s make something?

A basic website for
this course’s (your

project’s) information.

Adding interactions. Code for different
types of events:

onClick, onHover

Responsive designs

DO: Using variables for interactions

TRY TO MAKE SOME
SECTIONS COLLAPSIBLE.

STORE THE STATE IN JS.

DO: Let’s make different layouts and styles

Try three different styles and
layouts for your website

Check them for
responsiveness on three

different devices

Add 3 types of interaction
through js

Some layout frameworks

Super lightweight: Pico.css

DO: Let’s make multipage apps

COMMON CODE FOR
HEADER, FOOTER

USE SCRIPTS TO
INCLUDE ON ALL PAGES

Responsive Design

The term responsive design, coined by Ethan Marcotte in 2010, described using fluid grids, fluid
images, and media queries to create responsive content.

Flexbox model

https://developer.mozilla.org/en-

US/docs/Learn_web_development/Core/CSS_layout/Responsive_Design

https://developer.mozilla.org/en-

US/docs/Learn_web_development/Core/CSS_layout/Media_queries

https://alistapart.com/article/responsive-web-design/

Understanding FlexBox

https://www.w3schools.com/css/css3_flexbox.asp

Flexbox example

Media Queries

Screen-size/Viewport size dependent css

Do you need a
media query?

Always prefer flexbox/css

grid solutions since these

are more general

solutions!

Styling images

https://www.w3schools.com/css/css3_images.asp

Guess what this does?

https://www.w3schools.com/css/css3_images.asp

Frameworks

Common frameworks

React

Vue.js

Next.js

What do these bring to the table?

Large number of interactions in a component style

Good to use when highly functional SPAs (single page applications) are required

Reflections from last class
Guest lecture by Archit

My two cents.

If you’re imagining screens which are largely interactive:

◦ Next js based app

If you’re imagining screens which are largely static with interactive components:

◦ HTMX + Static site generator (Eleventy)

If you’re imagining screens with complex visualizations and custom interactions:

◦ Stick to raw html/css/js

Prompting like a pro

OpenAI

Services

Prompting

Strategies for prompting

Writing Clear Instructions

• Include details in your query to get more relevant answers

•Ask the model to adopt a persona

•Use delimiters to clearly indicate distinct parts of the input

• “”” or <article></article> or even Santa: Banta:

• Explain task to the “system”

•Specify the steps required to complete a task

•Provide examples (Few shot prompting)

•Specify the desired length of the output

https://platform.openai.com/docs/guides/prompt-engineering#tactic-include-details-in-your-query-to-get-more-relevant-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-include-details-in-your-query-to-get-more-relevant-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-include-details-in-your-query-to-get-more-relevant-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering#tactic-ask-the-model-to-adopt-a-persona
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-delimiters-to-clearly-indicate-distinct-parts-of-the-input
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-delimiters-to-clearly-indicate-distinct-parts-of-the-input
https://platform.openai.com/docs/guides/prompt-engineering#tactic-specify-the-steps-required-to-complete-a-task
https://platform.openai.com/docs/guides/prompt-engineering#tactic-specify-the-steps-required-to-complete-a-task
https://platform.openai.com/docs/guides/prompt-engineering#tactic-provide-examples
https://platform.openai.com/docs/guides/prompt-engineering#tactic-provide-examples
https://platform.openai.com/docs/guides/prompt-engineering#tactic-specify-the-desired-length-of-the-output
https://platform.openai.com/docs/guides/prompt-engineering#tactic-specify-the-desired-length-of-the-output

Providing reference text

•Instruct the model to answer using a reference text

• Use embeddings when text is too big

•Instruct the model to answer with citations from a reference text

https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-answer-using-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-answer-using-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-answer-with-citations-from-a-reference-text
https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-answer-with-citations-from-a-reference-text

Split complex tasks into simpler subtasks

•Use intent classification to identify the most relevant instructions for a user query

•For dialogue applications that require very long conversations, summarize or filter previous dialogue

• Think of it as note taking

•Summarize long documents piecewise and construct a full summary recursively

https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-intent-classification-to-identify-the-most-relevant-instructions-for-a-user-query
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-intent-classification-to-identify-the-most-relevant-instructions-for-a-user-query
https://platform.openai.com/docs/guides/prompt-engineering#tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue
https://platform.openai.com/docs/guides/prompt-engineering#tactic-for-dialogue-applications-that-require-very-long-conversations-summarize-or-filter-previous-dialogue
https://platform.openai.com/docs/guides/prompt-engineering#tactic-summarize-long-documents-piecewise-and-construct-a-full-summary-recursively
https://platform.openai.com/docs/guides/prompt-engineering#tactic-summarize-long-documents-piecewise-and-construct-a-full-summary-recursively

Give the model time to "think"

• Instruct the model to work out its own solution before rushing to a conclusion

• Use inner monologue or a sequence of queries to hide the model's reasoning process

• Ask the model if it missed anything on previous passes

https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-work-out-its-own-solution-before-rushing-to-a-conclusion
https://platform.openai.com/docs/guides/prompt-engineering#tactic-instruct-the-model-to-work-out-its-own-solution-before-rushing-to-a-conclusion
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-inner-monologue-or-a-sequence-of-queries-to-hide-the-model-s-reasoning-process
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-inner-monologue-or-a-sequence-of-queries-to-hide-the-model-s-reasoning-process
https://platform.openai.com/docs/guides/prompt-engineering#tactic-ask-the-model-if-it-missed-anything-on-previous-passes
https://platform.openai.com/docs/guides/prompt-engineering#tactic-ask-the-model-if-it-missed-anything-on-previous-passes

Use tools

•Use embeddings-based search to implement efficient knowledge retrieval

•Use code execution to perform more accurate calculations or call external APIs

• Use for visualizations and dashboards

•Give the model access to specific functions

https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-embeddings-based-search-to-implement-efficient-knowledge-retrieval
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-code-execution-to-perform-more-accurate-calculations-or-call-external-apis
https://platform.openai.com/docs/guides/prompt-engineering#tactic-use-code-execution-to-perform-more-accurate-calculations-or-call-external-apis
https://platform.openai.com/docs/guides/prompt-engineering#tactic-give-the-model-access-to-specific-functions
https://platform.openai.com/docs/guides/prompt-engineering#tactic-give-the-model-access-to-specific-functions

Test changes systematically

•Evaluate model outputs with reference to gold-standard answers

https://platform.openai.com/docs/guides/prompt-engineering#tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers
https://platform.openai.com/docs/guides/prompt-engineering#tactic-evaluate-model-outputs-with-reference-to-gold-standard-answers

More from OpenAI

https://cookbook.openai.com/

•Prompting libraries & tools

•Prompting guides

•Video courses

•Papers on advanced prompting to improve reasoning

https://cookbook.openai.com/
https://cookbook.openai.com/related_resources#prompting-libraries--tools
https://cookbook.openai.com/related_resources#prompting-libraries--tools
https://cookbook.openai.com/related_resources#prompting-guides
https://cookbook.openai.com/related_resources#prompting-guides
https://cookbook.openai.com/related_resources#video-courses
https://cookbook.openai.com/related_resources#video-courses
https://cookbook.openai.com/related_resources#papers-on-advanced-prompting-to-improve-reasoning
https://cookbook.openai.com/related_resources#papers-on-advanced-prompting-to-improve-reasoning

Gemini

Services

Basic usage

Strategies for prompting

Clear and specific instructions

◦ Define task clearly, in steps if required

◦ Specify constraints

◦ Define format

Include Few-shot Examples

Experiment with number of examples

Include patterns, not antipatterns

Use consistent formatting in examples

Adding contextual information

•Include information (context) in the prompt that you want the model to use when generating a response.

• Specially useful when using tools

•Give the model instructions on how to use the contextual information.

Add prefixes

Input, e.g., ARTICLE:

Output, e.g., JSON:

Include examples

Let the model complete partial output

•If you give the model a partial input, the model completes that input based on any available examples or

context in the prompt.

•Having the model complete an input may sometimes be easier than describing the task in natural

language.

•Adding a partial answer to a prompt can guide the model to follow a desired pattern or format.

Break down prompts into simple components

Break down instructions

◦ Separate out major “functions” and use different prompts for each function

Chain prompts, e.g., running steps one after the other to ensure intermediate output

Aggregate results, e.g., going through your codebase

Different parameter values

Max output tokens

Temperature

◦ Higher the temperate, more creative

Top-K

◦ Sampling during generation

Top-P

◦ Tokens are selected from the most (see top-K) to least probable until the sum of their probabilities equals the top-P value.

◦ if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-P value is 0.5, then the model will select either A or B

as the next token by using temperature and excludes C as a candidate.

Iterating on prompts

Use different paraphrasing

Switch to analogous tasks

Change order of prompt content

Prompting with files

• Prompt design fundamentals

• Be specific in your instructions: Craft clear and concise instructions that leave minimal room for misinterpretation.

• Add a few examples to your prompt: Use realistic few-shot examples to illustrate what you want to achieve.

• Break it down step-by-step: Divide complex tasks into manageable sub-goals, guiding the model through the process.

• Specify the output format: In your prompt, ask for the output to be in the format you want, like markdown, JSON, HTML and more.

• Put your image first for single-image prompts: While Gemini can handle image and text inputs in any order, for prompts containing a single image, it might perform better if that
image is placed before the text prompt.

• Troubleshooting your multimodal prompt

• If the model is not drawing information from the relevant part of the image: Drop hints with which aspects of the image you want the prompt to draw information from.

• If the model output is too generic (not tailored enough to the image):At the start of the prompt, try asking the model to describe the image(s) before providing the task
instruction, or try asking the model to refer to what's in the image.

https://ai.google.dev/gemini-api/docs/file-prompting-strategies#fundamentals
https://ai.google.dev/gemini-api/docs/file-prompting-strategies#fundamentals
https://ai.google.dev/gemini-api/docs/file-prompting-strategies#troubleshooting
https://ai.google.dev/gemini-api/docs/file-prompting-strategies#troubleshooting

Claude

Key capabilities

Before you prompt

Set a good goal

◦ https://docs.anthropic.com/en/docs/build-with-

claude/define-success

◦ Specific

◦ Measurable

◦ Achievable

◦ Relevant

https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success
https://docs.anthropic.com/en/docs/build-with-claude/define-success

Create evals

e.g., in limited types of interactions within your website or retrieving data from the DB

Levels of tests

How to prompt Claude?

1.Prompt generator

2.Be clear and direct

3.Use examples (multishot)

4.Let Claude think (chain of thought)

5.Use XML tags

6.Give Claude a role (system prompts)

7.Prefill Claude’s response

8.Chain complex prompts

9.Long context tips

https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prompt-generator
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prompt-generator
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/be-clear-and-direct
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/be-clear-and-direct
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/multishot-prompting
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/use-xml-tags
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/system-prompts
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/system-prompts
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prefill-claudes-response
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/long-context-tips
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/long-context-tips

Clear and direct prompts

Give contextual information

◦ Where is this going to be used?

◦ Who is the audience?

Be specific about what you want Claude to do

Provide instructions as sequential steps

Prompt to think

Basic: Think step-by-step

Intermediate: Outline steps

The notes approach: Use tags <thinking> <answer>.

◦ Additionally, use summarization on thinking

◦ Add other elements like absorbing PDFs or notes

System prompts

You are a X. You provide the service Y to the firm Z.

Prefill responses

Chain it up

1.Identify subtasks: Break your task into

distinct, sequential steps.

2.Structure with XML for clear handoffs:

Use XML tags to pass outputs between

prompts.

3.Have a single-task goal: Each subtask

should have a single, clear objective.

4.Iterate: Refine subtasks based on Claude’s

performance.

Example chained workflows:
•Multi-step analysis: See the legal and business
examples below.
•Content creation pipelines: Research → Outline →
Draft → Edit → Format.
•Data processing: Extract → Transform → Analyze →
Visualize.
•Decision-making: Gather info → List options →
Analyze each → Recommend.
•Verification loops: Generate content → Review →
Refine → Re-review.

Long prompts

Keep queries at the end (30% improvement in response)

Structure each document and metadata with XML

Add quoting capabilities with explicit indexing

DO: Make screens for your web app

Let’s think through

◦ the kind of things our users require,

◦ the amount of reactivity required,

◦ source/destination for data

◦ Look/feel for the app

DO: Generate each screen using an API

Let’s do Ollama APIs this time

Try two models, may be

◦ a phi3 and

◦ a deepseek-r1/llama 3.2

Managing data
DATABASES

https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5

https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5

What are databases?

Which excel sheets would this person

maintain?

What information will I require for my

screens?

DB -> Table -> Record -> Field

Good DB Design

A good database design is, therefore, one that:

◦ Divides your information into subject-based tables to reduce redundant data.

◦ Provides Access with the information it requires to join the information in the tables together as

needed.

◦ Helps support and ensure the accuracy and integrity of your information.

◦ Accommodates your data processing and reporting needs.

Designing your DB: The process

Determine the purpose of your database

Find and organize the information required

Divide the information into tables

Turn information items into columns

Specify primary keys

Set up the table relationships

Refine your design

Apply the normalization rules

The purpose

Number of users

◦ Is the user a single machine

◦ Or distributed machines that could work parallely? DB on server

What will you do with the data?

◦ Which reports to be generated

◦ What type of user interactions are required?

◦ What kind of questions will you need to answer later, e.g., which regions provide the best revenue?

Gathering information

For each type of information, think of

◦ What field would you keep if you give them a paper form, e.g., a customer

◦ From your screen, what would you display for different components of the screen

Dividing information into tables

A table is in 1NF if:

1. Each column contains

atomic (indivisible)

values (no lists, arrays,

or nested values).

2. Each column contains

values of a single type.

3. Each row has a

unique identifier

(Primary Key).

1NF: 1st Normal Form (Atomicity)

2NF: No partial dependencies

A table is in 2NF if:

1. It is in 1NF.

2. All non-key attributes must depend on the entire

primary key, not just a part of it.

Student Name depends on

Student_ID and Course_Name

depends on Course ID

3NF: No transitive dependencies

A table is in 3NF if:

1. It is in 2NF.

2. All non-key attributes depend only on the

primary key (no indirect dependencies).

Here, Course_Name and Instructor
depend on Course_ID, not Student_ID,

creating a transitive dependency.

BCNF: Boyce Codd Normal Form

BCNF is a stricter version of 3NF. A table is in BCNF if:

1. It is in 3NF.

2. Every determinant is a candidate key.

Here, Professor → Course, but

Course → Department. This

means Course should be a
primary key.

4th NF: No multi-valued dependencies

A table is in 4NF if:

1. It is in BCNF.

2. No column contains two or more independent multi-valued facts.

Instructor and

book are

independent

When to Stop
Normalizing?

• 3NF is sufficient for most

practical applications.

• BCNF is used in complex

enterprise applications.

• 4NF and 5NF are used in

advanced use cases like

data warehouses.

Recap from guest lecture:
Designing your DB

Start with Content

Create a data model

- Break down content model
into objects

- Define properties and types

- Map Object relationships

Requests and API

Making requests

Source: https://medium.com/@shikha.ritu17/rest-api-architecture-6f1c3c99f0d3

Let’s see a quick demo

FastAPI is a modern, fast (high-performance), web framework for building APIs with

Python based on standard Python type hints.

The key features are:
•Fast: Very high performance, on par with NodeJS and Go (thanks to Starlette and

Pydantic). One of the fastest Python frameworks available.

•Fast to code: Increase the speed to develop features by about 200% to 300%. *

•Fewer bugs: Reduce about 40% of human (developer) induced errors. *

•Intuitive: Great editor support. Completion everywhere. Less time debugging.
•Easy: Designed to be easy to use and learn. Less time reading docs.

•Short: Minimize code duplication. Multiple features from each parameter declaration.

Fewer bugs.

•Robust: Get production-ready code. With automatic interactive documentation.

•Standards-based: Based on (and fully compatible with) the open standards for
APIs: OpenAPI (previously known as Swagger) and JSON Schema.

https://fastapi.tiangolo.com/#performance
https://github.com/OAI/OpenAPI-Specification
https://json-schema.org/

Typing hints for FastAPI

With FastAPI you declare parameters with type hints and you get:

•Editor support.

•Type checks.

...and FastAPI uses the same declarations to:

•Define requirements: from request path parameters, query parameters, headers, bodies, dependencies, etc.

•Convert data: from the request to the required type.

•Validate data: coming from each request:

• Generating automatic errors returned to the client when the data is invalid.

•Document the API using OpenAPI:

• which is then used by the automatic interactive documentation user interfaces.

The basic app

Path operation

decorator

Route

Type of request

JSON Response

Async calls

Common reasons to wait:

•the data from the client to be sent through
the network
•the data sent by your program to be received
by the client through the network
•the contents of a file in the disk to be read by
the system and given to your program
•the contents your program gave to the
system to be written to disk
•a remote API operation
•a database operation to finish
•a database query to return the results etc.

Concurrency vs Parallelism

Concurrency

Tell someone to finish something while you do your work,

e.g., ordering food

Parallelism

Get a number of agents supporting you in your work, e.g.,

cleaning your house

FastAPI is both, feat Starlette.

Parallelism is not always
useful, nor is concurrency

Let’s go through

- Basic FastAPI app

- Doc/Redoc

What is a schema?

- The definition of format and purpose of a certain path/variable

◦ API schema

◦ Data schema

Servers

Request

Response

• HTML

• Text

• JSON

Refer main.py in
fastapi-demo for
examples

Collecting data for APIs

Form From individual fields (DOM Tree)

Collecting files

Cookies

Small amount of data sent by server to

your browser

Remember state information

◦ Session management

◦ Personalization

◦ Tracking

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

Storage

sessionStorage

◦ Maintains a storage area for active sessions (including reload/restore)

◦ Resets if you close the browser

localStorage

◦ Persists on browser re-open

Response

FastAPI limits response to the defined types

◦ Gives server error if incomplete or ill-formed data is received from the server

JSON Response

Redirect Response

File Response

Status
Codes

Security

Authentication – OAuth2

OAuth2

Designed to isolate authentication from backend/API

◦ Same FastAPI application can also handle the API and authentication (like here)

Defines different types of flows

◦ Password flow

◦ Refresh token flow

◦ Device authorization flow, etc.

Authentication Flow

The user types
the username and password in the

frontend, and hits Enter.

The frontend (running in the user's
browser) sends

that username and password to a
specific URL in our API (declared

with tokenUrl="token").

The API checks
that username and password, and
responds with a "token".

• A "token" is just a string with some content that
we can use later to verify this user.

• Normally, a token is set to expire after some time.

• So, the user will have to log in again at some
point later.

• And if the token is stolen, the risk is less. It is not
like a permanent key that will work forever (in
most of the cases).

The frontend stores that token
temporarily somewhere.

The user clicks in the frontend to go to
another section of the frontend web

app.

The frontend needs to fetch some
more data from the API.

• But it needs authentication for that specific
endpoint.

• So, to authenticate with our API, it sends a
header Authorization with a value
of Bearer plus the token.

What does it do?

It will go and look in the request for that Authorization header, check if the value is Bearer plus

some token, and will return the token as a str.

If it doesn't see an Authorization header, or the value doesn't have a Bearer token, it will respond

with a 401 status code error (UNAUTHORIZED) directly.

You don't even have to check if the token exists to return an error. You can be sure that if your

function is executed, it will have a str in that token.

Passwords (login routine)

Image source: https://www.innokrea.com/cryptography-hash-functions-hashes-and-passwords-part-2/

The complete auth with JWT tokens and
password hashing (bcrypt)

https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies

https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies
https://fastapi.tiangolo.com/tutorial/security/oauth2-jwt/#update-the-dependencies

TODO: Screens + User Journey

Please complete and document if not already done

TODO: Design an API interface

Based on the functionality you imagine that you need, design an API interface with dummy

calls but decent return response

Build your web pages and verify your user journey

Using reasoning models
https://platform.openai.com/docs/guides/reasoning-best-practices

https://platform.openai.com/docs/guides/reasoning-best-practices
https://platform.openai.com/docs/guides/reasoning-best-practices
https://platform.openai.com/docs/guides/reasoning-best-practices
https://platform.openai.com/docs/guides/reasoning-best-practices
https://platform.openai.com/docs/guides/reasoning-best-practices

The
orchestrator

Recommended use cases

Navigating ambiguity

Finding needles in a haystack

Finding relationships and nuances

across a large dataset

Recommended use cases contd

Multi-step agentic reasoning

Visual reasoning

Code

Recommended use cases contd

Evaluation and benchmarking for other model responses

◦ LLM as a judge

Do’s and Don’ts with reasoning models

DOs

Developer messages are the new system

messages

◦ .

◦ Keep prompts simple and direct

Better zero-shot success

Provide all constraints

DONTs

Avoid asking to ‘think step-by-step’ or

‘explain your reasoning’

Be vague about end goal

Level of reasoning

Type of data: Validations to be performed:

https://cookbook.openai.com/examples/o1/using_reasoning_for_data_validation

https://cookbook.openai.com/examples/o1/using_reasoning_for_data_validation

How to?

Note: your reasoning is part of tokens

DO: Which of your endpoints can use
reasoning?

List these API endpoints separately

Try out models

◦ O1

◦ O3-mini

◦ Gemini Flash 2.0 Thinking

◦ Deepseek-r1

DO: Within your prompts for web dev, which
prompts took too much effort?

Try reasoning models to generate prompts

Try reasoning models to do the task

In-built tools

OpenAI

◦ Web search

◦ File search

◦ Computer use!

Claude

◦ Use function calling

Google

◦ Google search

https://ai.google.dev/gemini-api/docs/grounding?lang=python
https://ai.google.dev/gemini-api/docs/grounding?lang=python

Introduction to RAG

What’s RAG?

Source: https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/

https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/
https://developer.nvidia.com/blog/rag-101-demystifying-retrieval-augmented-generation-pipelines/

Vector embeddings

• Compressed latent

space, typically built to

capture ‘meaning’

• Training pipelines

typically bring similar

inputs together. Hence,

utility in
• Search

• Clustering

• Recommendation

• Anomaly, etc.

Do we need a DB?

Functions such as search, cluster,

rank, retrieve are efficiently

implemented using vector

databases

Some of them are also optimized

for use in cloud, being a common

use case

Weaviate

Pinecone

ChromaDB

Redis Stack ElasticSearch

Different types
of search

Hybrid search

Common
use cases

Who’s providing embeddings?

Ollama

◦ Nomic

◦ Snowflake

OpenAI

◦ Text-embedding-3-small

◦ Text-embedding-3-large

Gemini

◦ gemini-embedding-exp-03-07

◦ text-embedding-004

◦ embedding-001

Claude

Sample use cases

• "Suggest trending tech and non-

tech jobs I can apply for with my

degree."

• "Compare short-term courses for

data science vs. digital marketing

with fees and reviews."

Why RAG?: Retrieves real-time course and

job data from websites and combines it with

personalized advice.

•"Plan a Goa trip under ₹10,000
for 4 friends with hotel, food,

and places to visit.”

•"What are offbeat travel places

near Delhi for a 2-day trip?”

Why RAG?: Combines latest travel blogs,

real-time hotel/transport prices, and

customizes itinerary.

•"Suggest 5 trending research topics
in computer vision for final-year

B.Tech project."
•"What are the latest AI techniques
being used for water management

in Indian cities?"
Why RAG?: Retrieves recent papers, conference

proceedings, and Google Scholar trends to
recommend topics.

Constructing context from many different sources, often requiring embedding based

search/match

Implement with weviate

Code

Result

RAG

on

result

The G in RAG

Source: https://weaviate.io/developers/weaviate/starter-guides/generative

https://weaviate.io/developers/weaviate/starter-guides/generative
https://weaviate.io/developers/weaviate/starter-guides/generative
https://weaviate.io/developers/weaviate/starter-guides/generative

Apply LLM to each result

Consolidated example

Refer

https://github.com/rjalexa/booksimil/blob/main/booksimil/mybooks.ipynb

https://github.com/rjalexa/booksimil/blob/main/booksimil/mybooks.ipynb

Fresh off the oven

OpenAI now supports file searches without explicit chunking strategies, etc. using

Responses API

https://cookbook.openai.com/examples/file_search_responses

New tools in town

◦ Web Search

◦ File Search

◦ Computer Use

https://cookbook.openai.com/examples/file_search_responses

Agents

Agent prototypes

Narrow vertical expertise

◦ Outlining and planning

◦ Someone good at searching sources and writing a first draft

◦ A master editor

Agentic Workflows

Why?

Planning before execution

Tool use

Reflecting on intermediate results

Multiple perspectives

Common memory to track progress

Let’s build one

Refer to notebook in web-dev-with-ai repo

◦ dlai-build-an-agent.ipynb

◦ DO: Modify this for gemini and run!

◦ Questions to ponder:

◦ How will you use this for multiple conversations in parallel? (Streaming)

◦ How will you do very long tasks, e.g., build this game (Persistence)

◦ How to implement this across different runs and possibly shutdowns?

Use tools (and
build tools)

https://python.langchain.c

om/docs/integrations/tools

/

Remember, tool’s output

is for an LLM, not a

human!

https://python.langchain.com/docs/integrations/tools/
https://python.langchain.com/docs/integrations/tools/
https://python.langchain.com/docs/integrations/tools/

Building a tool

Building a tool is mostly just implementing function calls

◦ Retreive something from the web api

◦ Typically returns html

◦ Parse with beautifulsoup

◦ Return in natural language/list/json

Letting tools run code?

https://github.com/OpenInterpreter/open-interpreter

https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter

Need a
crew?
(crew.ai)

Source: https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/

https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/
https://www.deeplearning.ai/short-courses/multi-ai-agent-systems-with-crewai/

Making a crew with crew.ai
Step 1: Hire the people

Planner

Writer

Editor

Step 2: Give them tasks

Step 3: See the magic

Works with Ollama, Gemini, OpenAI, Mistral, HuggingFace

More features

Memory
Self-delegation

(allow agents to communicate with each

other requesting help with something)
Events

Tools: https://docs.crewai.com/concepts/tools

https://docs.crewai.com/concepts/tools

Agentic RAG

Source: https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21

https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21
https://levelup.gitconnected.com/agentic-rag-using-crewai-langchain-bf935d26bc21

Agents that live and learn (humans?)

Prompting Review

The types of prompting

Step-back Chain-of-
thought

Tree-of-
thought

Self-
consistency

Agentic
(ReAct)

Model Context Protocol (MCPs)
Connecting with other tools/resources

https://www.anthropic.com/news/model-context-protocol

Server:

Exposes app specific data, e.g.,
Whatsapp would expose chats

Client:

AI application that uses this data,
e.g., Claude Desktop

https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol

Example interaction

Integrating
with FastAPI

Deployment

Types of servers

LAMP – Most commonly used

Linux Apache MySQL PHP/Perl/Python

W - Windows

M - Mac

X – Cross platform (PHP, Perl)

What does Apache do?

Types of websites

Static – HTML, JS, CSS → Github.io

Backend APIs – FastAPI, Flask → Railway or Render

Full Stack apps - React/Next + Express → Railway/Render

- Requires two servers for next + express but can be combined for react + express

Environments requirements

Next/react js -> node

- When installing on a server, requires npm install

Fastapi/flask -> python

- When installing on a server, requires pip install –r requirements.txt

Therefore, suffer from cold starts (5 – 20s) on serverless deployments

Or require paid plans to keep the instance on

But what about my DB?

SQLlite -> Works only on persistent disk, doesn’t work on serverless containers since they

only offer ephemeral disks

You can use sqllite if you choose to deploy on aws ec2 instances

To deploy,

◦ use a managed DB, typically postgres using supabase or railway postgres

What about files?

Typically stored on aws s3 buckets due to cheaper and scalable object storage

URLs are stored in database

Other options: MinIO, Wasabi (much cheaper storage, also available for self hosting)

Securing your website

Certificates

◦ HTTPS and SSL certificates to keep communication with website encrypted

CORS

◦ Only allow API requests from sources that you recognize (unless the APIs are meant for public use)

Rate limits

◦ Restrict logins through captcha

◦ Restrict API call frequency per user/IP

Example of limiting rates using fastapi’s slowapi

Scaling your website

Load balancing

Caching (Distributed caching)

Source: https://www.cloudns.net/blog/load-balancing/

Hooks and Sockets

Real time communication

◦ Set up a socket

Event based communication

◦ Set up a hook

HTMX

Library that allows you to

access modern browser

features (like animations,

editing, etc.) directly using

html instead of using js

See examples here:

https://htmx.org/examples/

https://htmx.org/examples/

	Slide 1: Web Development with AI
	Slide 2: Why this course?
	Slide 3: Course Philosophy and Approach
	Slide 4: What are we going to do?
	Slide 5: Evaluation
	Slide 6: Recommended read for when prompting isn’t enough
	Slide 7: What are websites? Some basic terminologies
	Slide 8: Programmatic access to a document (html/xml): DOM
	Slide 9: What are scripts?
	Slide 10: Styling content
	Slide 11: Margin
	Slide 12: JS Basics
	Slide 13: Events in JS
	Slide 14: DO: Let’s make something?
	Slide 15: DO: Using variables for interactions
	Slide 16: DO: Let’s make different layouts and styles
	Slide 17: Some layout frameworks
	Slide 18: DO: Let’s make multipage apps
	Slide 19: Responsive Design
	Slide 20: Understanding FlexBox
	Slide 21: Flexbox example
	Slide 22: Media Queries
	Slide 23: Do you need a media query?
	Slide 24: Styling images
	Slide 25: Frameworks
	Slide 26: Common frameworks
	Slide 27: What do these bring to the table?
	Slide 28: Reflections from last class Guest lecture by Archit
	Slide 29: Prompting like a pro
	Slide 30: OpenAI
	Slide 31: Services
	Slide 32: Prompting
	Slide 33: Strategies for prompting
	Slide 34: Providing reference text
	Slide 35: Split complex tasks into simpler subtasks
	Slide 36: Give the model time to "think"
	Slide 37: Use tools
	Slide 38: Test changes systematically
	Slide 39: More from OpenAI
	Slide 40: Gemini
	Slide 41: Services
	Slide 42: Basic usage
	Slide 43: Strategies for prompting
	Slide 44: Include Few-shot Examples
	Slide 45: Adding contextual information
	Slide 46: Add prefixes
	Slide 47: Let the model complete partial output
	Slide 48: Break down prompts into simple components
	Slide 49: Different parameter values
	Slide 50: Iterating on prompts
	Slide 51: Prompting with files
	Slide 52: Claude
	Slide 53: Key capabilities
	Slide 54: Before you prompt
	Slide 55: Create evals
	Slide 56: Levels of tests
	Slide 57: How to prompt Claude?
	Slide 58: Clear and direct prompts
	Slide 59: Prompt to think
	Slide 60: System prompts
	Slide 61: Prefill responses
	Slide 62: Chain it up
	Slide 63: Long prompts
	Slide 64: DO: Make screens for your web app
	Slide 65: DO: Generate each screen using an API
	Slide 66: Managing data
	Slide 67: What are databases?
	Slide 68: Good DB Design
	Slide 69: Designing your DB: The process
	Slide 70: The purpose
	Slide 71: Gathering information
	Slide 72: Dividing information into tables
	Slide 73: 2NF: No partial dependencies
	Slide 74: 3NF: No transitive dependencies
	Slide 75: BCNF: Boyce Codd Normal Form
	Slide 76: 4th NF: No multi-valued dependencies
	Slide 77: When to Stop Normalizing?
	Slide 78: Recap from guest lecture: Designing your DB
	Slide 79: Requests and API
	Slide 80: Making requests
	Slide 81: Let’s see a quick demo
	Slide 82
	Slide 83: Typing hints for FastAPI
	Slide 84: The basic app
	Slide 85: Async calls
	Slide 86: Concurrency vs Parallelism
	Slide 87: Let’s go through
	Slide 88: What is a schema?
	Slide 89: Servers
	Slide 90: Refer main.py in fastapi-demo for examples
	Slide 91: Collecting data for APIs
	Slide 92: Collecting files
	Slide 93: Cookies
	Slide 94: Storage
	Slide 95: Response
	Slide 96: Status Codes
	Slide 97: Security
	Slide 98: Authentication – OAuth2
	Slide 99: OAuth2
	Slide 100: Authentication Flow
	Slide 101: What does it do?
	Slide 102: Passwords (login routine)
	Slide 103: The complete auth with JWT tokens and password hashing (bcrypt)
	Slide 104: TODO: Screens + User Journey
	Slide 105: TODO: Design an API interface
	Slide 106: Using reasoning models
	Slide 107: The orchestrator
	Slide 108: Recommended use cases
	Slide 109: Recommended use cases contd
	Slide 110: Recommended use cases contd
	Slide 111: Do’s and Don’ts with reasoning models
	Slide 112: Level of reasoning
	Slide 113: How to?
	Slide 114: DO: Which of your endpoints can use reasoning?
	Slide 115: DO: Within your prompts for web dev, which prompts took too much effort?
	Slide 116: In-built tools
	Slide 117: Introduction to RAG
	Slide 118: What’s RAG?
	Slide 119: Vector embeddings
	Slide 120: Do we need a DB?
	Slide 121: Different types of search
	Slide 122: Hybrid search
	Slide 123: Common use cases
	Slide 124: Who’s providing embeddings?
	Slide 125: Sample use cases
	Slide 126: Implement with weviate
	Slide 127: Apply LLM to each result
	Slide 128: Consolidated example
	Slide 129: Fresh off the oven
	Slide 130: Agents
	Slide 131: Agent prototypes
	Slide 132: Agentic Workflows
	Slide 133: Why?
	Slide 134: Let’s build one
	Slide 135: Use tools (and build tools)
	Slide 136: Building a tool
	Slide 137: Letting tools run code?
	Slide 138: Need a crew? (crew.ai)
	Slide 139: Making a crew with crew.ai Step 1: Hire the people
	Slide 140: Step 2: Give them tasks
	Slide 141: Step 3: See the magic
	Slide 142: More features
	Slide 143: Agentic RAG
	Slide 144: Agents that live and learn (humans?)
	Slide 145: Prompting Review
	Slide 146: The types of prompting
	Slide 147: Model Context Protocol (MCPs) Connecting with other tools/resources
	Slide 148: Example interaction
	Slide 149: Integrating with FastAPI
	Slide 150: Deployment
	Slide 151: Types of servers
	Slide 152: What does Apache do?
	Slide 153: Types of websites
	Slide 154: Environments requirements
	Slide 155: But what about my DB?
	Slide 156: What about files?
	Slide 157: Securing your website
	Slide 158: Scaling your website
	Slide 159: Hooks and Sockets
	Slide 160: HTMX
	Slide 161

